
MUSLIN demo: High QoE Fair Multi-Source Live Streaming
Simon Da Silva1, Joachim Bruneau-Queyreix23, Mathias Lacaud12,

Daniel Négru1, Laurent Réveillère1
1 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France

2 Joada SAS, Bordeaux, France, and 3 National Institute of Telecommunications, Warsaw, Poland
{sdasilva,mlacaud,reveillere,negru}@labri.fr,jbruneauqueyreix@joada.net

ABSTRACT
Delivering video content with a high and fairly shared quality
of experience is a challenging task in view of the drastic
video traffic increase forecasts. Currently, content delivery
networks provide numerous servers hosting replicas of the
video content, and consuming clients are re-directed to the
closest server. Then, the video content is streamed using
adaptive streaming solutions. However, some servers become
overloaded, and clients may experience a poor or unfairly
distributed quality of experience.

In this demonstration, we showcase Muslin, a streaming
solution supporting a high, fairly shared end-users quality
of experience for live streaming. Muslin leverages on MS-
Stream, a content delivery solution in which a client can
simultaneously use several servers. Muslin dynamically pro-
visions servers and replicates content into servers, and adver-
tises servers to clients based on real-time delivery conditions.
Our demonstration shows that our approach outperforms
traditional content delivery schemes enabling to increase the
fairness and quality of experience at the user side without
requiring a greater underlying content delivery platform.

CCS CONCEPTS
• Networks;

KEYWORDS
live streaming, multi-source adaptive streaming, fairness, QoE
ACM Reference Format:
Simon Da Silva1, Joachim Bruneau-Queyreix23, Mathias Lacaud12,
Daniel Négru1, Laurent Réveillère1 . 2018. MUSLIN demo: High
QoE Fair Multi-Source Live Streaming . In MMSys’18: 9th ACM
Multimedia Systems Conference, June12–15, 2018, Amsterdam,
Netherlands. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3204949.3208108

1 INTRODUCTION
End-users’ Quality of Experience (QoE) is a crucial factor
for the success of the increasing number of video streaming
services. According to Cisco [2], video traffic will experience a

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MMSys’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5192-8/18/06.
https://doi.org/10.1145/3204949.3208108

tremendous growth and is expected to exceed 80% of the total
Internet traffic by 2020. Most of the time, such traffic increase
forecasts are not followed by the necessary upgrade of core
networks capacity due to the important costs it incurs and
major issues arise with respect to the Quality of Experience
of such services. Therefore, the design of current and future
content delivery solutions needs to consider such aspects.

Content Delivery Networks (CDNs) are extensively used
for the delivery of video content over the Internet. In such ar-
chitectures, geographically distributed replica servers located
as close as possible to the consuming clients are provisioned
in advance with sufficient capacities using estimates of the
expected workload. When accessing a content, consuming
clients are automatically re-directed to the closest server so
as to temper network congestion and achieve higher through-
put. Although CDN solutions can handle a large volume
of requests, they laboriously adapt to the highly dynamic
and volatile nature of live streaming service audiences. As
a consequence, the streaming infrastructure can rapidly be
either over-scaled incurring unnecessary expenditures, or
under-sized and thus delivering poor QoE to end-users.

In addition to the CDN-based infrastructure, streaming
services usually rely on HTTP Adaptive Streaming (HAS)
solutions, often relying on the widely adopted Dynamic Adap-
tive Streaming over HTTP (DASH) standard. Such solutions
enable the consuming client to dynamically adjust the re-
quested content bitrate according to the observed network
conditions or to the client buffer occupancy. However, if a
large amount of end-users located under the same geographic
area is simultaneously consuming the same streaming ser-
vice, the nearest server may become rapidly overloaded. As a
consequence, some users may suffer throughput degradation
or content unavailability, and experience a poor or unfairly
shared QoE as they compete for network and server resources.

We introduce Muslin, a streaming solution supporting a
high, fairly shared end-users quality of experience for live
streaming services over the Internet. Muslin leverages on MS-
Stream, based on the DASH standard, in which a client can
simultaneously use several servers with heterogeneous capac-
ities in order to aggregate network throughput on multiple
communication channels. To support live streaming, Muslin
periodically estimates the required throughput to adjust the
scale of the service infrastructure. Muslin then assigns con-
tent servers to clients based on feedbacks (containing QoS
metrics and other relevant data) periodically sent by Muslin
clients during streaming sessions.

https://doi.org/10.1145/3204949.3208108
https://doi.org/10.1145/3204949.3208108
https://doi.org/10.1145/3204949.3208108

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands S. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère

2 CONCEPTS: MS-STREAM AND MUSLIN
In this section we present the scientific and engineering con-
cepts behind our contribution.

2.1 MS-Stream
The Multiple-Source Adaptive Streaming over HTTP (MS-
Stream) [5] [8] [6] [7] solution is a proposition that extends
the DASH standard, wherein a client can simultaneously
utilize multiple servers in order to aggregate bandwidth over
multiple links while being resilient to network and server
impairments. In MS-Stream, for a given video segment, each
considered server delivers a video sub-segment to the client.

GOP	
GOP	

GOP	
GOP	GOP	

GOP	

Sub-segment 1 Sub-segment 2

GOP	GOP	
GOP	
GOP	
GOP	

GOP	

GOP	
#1	GOP	
GOP	

GOP	
GOP	

GOP	

Sub-segment 3

High bitrate GOP GOP	
Redundant
bitrate GOP GOP	 Null bitrate GOP GOP	

Sub-segment	
composer	at	
MS-Stream	
server	

Content qualities available at
MS-Stream server

Time Time

Example of possible sub-segments

GOP	
#1	GOP	

GOP	
GOP	
GOP	
GOP	

GOP	
#1	GOP	

GOP	
GOP	
GOP	
GOP	...

Figure 1: Sub-segment generation and composition

1 Mbps

2 Mbps

1 Mbps

Up	to	a	4	
Mbps	quality	

Sub-segment request

1	

 Sub-segment delivery 3	

2	Sub-segment composition

4	 Sub-segment aggregation
5	 Adaptation

Figure 2: MS-Stream content delivery overview

As shown in Fig.1, sub-segments are generated by inter-
leaving GoPs at different bitrates for the same segment: a
high desired bitrate, a critically low bitrate (redundant bi-
trate), or an emtpy GoP. The redundant bitrate is set to low
values (e.g. 150 Kbps) in order to provide video playback at
the lowest possible network transfer cost. Reconstructing the
original content quality is achieved by selecting the GoPs of
higher size in the pool of received sub-segments at client-side.
Should some sub-segments be missing, the content is still
playable by relying on the redundant GoPs, hence displaying
a sub-optimal visual quality but providing reliability and less
rebufferings in fluctuating network conditions.

An overview of the MS-Stream functioning is depicted
in Fig. 2. A MPD file containing the available MS-Stream
servers and video segments is periodically delivered to the
client. The client instructs MS-Stream servers to generate
and deliver sub-segments composed of video GoPs from the
representations available (listed in the MPD file). Then, the
MS-Stream client merges the received sub-segments to re-
construct a playable video segment with the highest possible
visual quality. The client adapts the number of simultaneously
used servers according to the observed network conditions and
to the targeted bitrate. The client also attempts to minimize
the bandwidth consumption overhead (𝑂%) resulting from

GoP redundancy. This redundancy adds about 6.5% network
overhead on average. It ought to be noted that the generation
and aggregation of sub-segments have very low processing
footprints [7] as they only require to assemble already en-
coded GoPs available at different bitrates. A demonstration
of MS-Stream is available online [1].

2.2 MUSLIN: Multi-Source Live Streaming
Muslin goal is to provide a high and fairly shared QoE for live
streaming services. To do so, it tackles the main reasons why
end-users are not satisfied with their streaming experience,
which are the number of rebuffering events, considered the
main negative impact on perceived QoE [13], the average
video bitrate displayed on the user video player and the num-
ber of resolution changes during the session, as both have a
significant influence on QoE in adaptive streaming [9]. Muslin
intends to solve the root causes for such QoE degradation,
the two main reasons being (1) the server load and (2) the
low bandwidth between the server and the client. Indeed, if a
server is overloaded or if the network channel bandwidth to
this server is low, clients requests to this server will timeout
and cause rebufferings or visual quality degradation. There-
fore, Muslin is able to monitor current delivery conditions
to adapt its delivery schemes.

The Muslin system is composed of a Muslin server, MS-
Stream clients, and MS-Stream content delivery servers with
a Muslin overlay to handle feedbacks and provisioning. In-
deed, Muslin clients send periodic feedbacks to the Muslin
server, including the observed bandwidth from each server,
the video sub-segment requests failure (timeout) rate, their
average displayed video bitrate, the number of rebufferings
they experience, and the number of quality changes. Then,
based on these feedbacks, the Muslin server accordingly scales
the underlying delivery platform, re-allocates servers, and
re-advertises content servers to Muslin clients to provide a
better QoE to end-users.

Figure 3: Muslin system architecture overview

As illustrated in Fig.3, (1) the Muslin server dynamically
provisions content servers and replicates content to avail-
able MS-Stream content delivery servers, which then register
themselves to the selection module; (2) when a client re-
quests a MPD file, the selection module replies with a list of
available servers; (3) the client can access live content and
begin the streaming session with the MS-Stream protocol;

MUSLIN demo: High QoE Fair Multi-Source Live Streaming MMSys’18, June 12–15, 2018, Amsterdam, Netherlands

(4) Muslin clients send periodic feedbacks. In this section,
we present in details the Muslin system and the Muslin
server two main components, the provisioning module and
the selection module.

2.2.1 Provisioning module. The provisioning module goal
is to decide on the number of servers to provision not only
to answer end-users throughput demand in video contents,
but also to maximize their QoE and minimize the required
infrastructure scale. To do so, it periodically estimates the
required throughput to fulfill the demand based on actual
feedbacks, and provisions a subset of servers to host the con-
tent. To decide which servers to provision, the Muslin server
computes a score for each MS-Stream content server. This
score is based on the clients locations, and on feedbacks gath-
ered periodically from all clients. Besides, this provisioning
algorithm is run on the Muslin server every 𝑇 seconds. This
period 𝑇 is equal to the length of two segments (typically 10
seconds).

2.2.2 Selection module. The Muslin selection module goal
is to advertise a subset of available content servers to each
client, based on a Ranking Score 𝑅𝑆𝑠𝑐, in order to reach
a high and fairly shared QoE. Then, Muslin clients decide
how many servers they use, based on MS-Stream adaptation
strategies. As illustrated in Fig. 4, if the closest content server
is already overloaded, the Muslin server selects and advertises
other content servers with a higher 𝑅𝑆𝑠𝑐 to the client. It
prevents content starvation from clients, and allows fairness
among users independently from their geographic position or
nearby servers.

Figure 4: Muslin 𝑅𝑆𝑠𝑐-based servers selection example

First, the selection module returns an ordered list of servers
when a client requests to discover available content servers.
To order the list of servers, the selection module uses a client-
specific Ranking Score (labeled 𝑅𝑆𝑠𝑐) for each server 𝑠 and
client 𝑐, based on feedbacks periodically sent by Muslin clients
during streaming sessions. Similarly to the provisioning score,
the 𝑅𝑆𝑠𝑐 is based on the distance between each client and
server, and on clients feedbacks. As shown in equation 1, the
client-specific ranking score includes the maximum distance
between any two places on Earth (20000 kilometers), the
geographical distance 𝐺𝐷𝑠𝑐 using geoIP data inferred from
IP addresses, the video sub-segment delivery failure rate 𝐹 𝑅𝑠

of server 𝑠 (i.e. the percentage of requests the server was not

able to handle on time), and the average observed bandwidth
𝑂𝐵𝑊𝑠 between all clients and server 𝑠.

𝑅𝑆𝑠𝑐 = ((20000 − 𝐺𝐷𝑠𝑐) * (1 − 𝐹 𝑅𝑠) * 𝑂𝐵𝑊𝑠)
1
3 (1)

The selection module computes the client-specific Ranking
Score 𝑅𝑆𝑠𝑐 between each client 𝑐 and each currently provi-
sioned server 𝑠, and returns the MPD file containing servers
sorted by descending 𝑅𝑆𝑠𝑐 order.

2.3 Implementation and scalability discussion
The Muslin modules and Muslin content servers overlay are
implemented in Java and run inside light-weight Docker
containers. Muslin content servers are built on top of MS-
Stream servers by adding the necessary glue code to manage
the interaction with the Muslin provisioning and selection
modules. All interactions with the Muslin modules fulfill
the REST architecture style. Muslin clients are developed
in pure JavaScript and run within any mobile or desktop
Web browser. Clients extend MS-Stream clients by featuring
periodic feedback reports to the Muslin server.

In terms of scalability issues, the Muslin system scales
similarly to current HAS solutions as MS-Stream is compliant
with the DASH standard. A scalability downside is due to
the periodic clients feedbacks as the Muslin server workload
grows linearly with the number of clients.

To solve this issue, we implement on the client a feedback
request probability Pr to bound the number of feedbacks
(see equation 2). We thus ensure statistically that at most 𝑁
clients will send a feedback for every period 𝑇 , depending on
the current audience 𝑣𝑡.

Pr = min (1, 𝑁/𝑣𝑡) (2)

Another scalability downside is due to the MPD refresh
requests from Muslin clients every few segments, or when
they experience a poor QoE. Similarly to the clients feedbacks,
the Muslin server can become overloaded when too many
clients request a new MPD file. To solve this issue, the Muslin
selection module is distributed across several network nodes,
each node only handling nearby clients requests (routed using
classic DNS-based schemes).

3 NOVELTY OF THE WORK
This section shows our innovations beyond current systems.

3.1 Multi-Source HTTP Adaptive Streaming
The work of Adhikari et al. [15] advocates that QoE would
greatly benefit from the venue of a practical HAS that can
actually utilize multiple servers simultaneously. Whang et
al. [12] present a streaming proposal using several servers
in parallel, providing better fairness, efficiency and stability
at server side, but lacking segment scheduling that leads to
low QoE performances against path heterogeneity. A multi-
source evolution of DASH is introduced by Pu et al. [16],
employing the Scalable Video Coding (SVC) technique that
imposes dependency between layers and requires a great care
in the design of the layer scheduler to prevent video stalls.

MMSys’18, June 12–15, 2018, Amsterdam, Netherlands S. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère

In contrast with these approaches, our client-centric multi-
source solution (MS-Stream) is an extension of the DASH
standard that considers requesting sub-segments to several
servers simultaneously, and abandoning late sub-segment
requests. The retrieved sub-segments can contain redundant
data so as to be aggregatable and independent from each
other, hence exposing a suitable network-impairment and
server-failure resiliency mechanism to avoid video stalls due
to the volatility of resources in heterogeneous environments.

3.2 Servers selection, QoE and fairness
Although CDN operators keep their strategies secret [17], the
usual paradigm is to estimate the audience for an event, and
to provision enough servers near end-users to withstand the
demand. Then, when clients request video content, the CDN
strategy is to route their requests to the nearest server thanks
to DNS [4] or IP anycast [3], and use HAS protocols for de-
livery. This behavior minimizes network-induced latency, and
lowers the probability to encounter congestion. For instance,
Adhikari et al. [15] introduced the DASH framework of Net-
flix, the largest DASH provider worldwide, and outlined that
a user is always bound to one server, regardless of network
issues. Consequently, one major drawback is that servers can
get overloaded, and thus some clients may receive a poor
QoE or might even not have access to the content at all.
Therefore, Muslin takes into account not only the distance,
but also the server bandwidth and requests failure (timeout)
rate, enabling to provide a better QoE to the users.

Besides, there have been some attempts to reach a better
QoE fairness between HAS clients. Georgopoulos et al. [10]
use Software Defined Networks to allocate network band-
width, and Petrangeli et al. [11] adapt the requested video
bitrate. However, to the best of our knowledge, all approaches
towards higher QoE fairness are single-source oriented and do
not consider dynamically advertising servers to the clients.

4 DEMO DESCRIPTION AND SETUP
In this demo, the Muslin and MS-Stream stack is compared to
standard DASH live streaming with anycast server affectation.
To do so, a set of servers with controllable bandwidth is
provided (see Fig. 5).

Demo scenario. The tester is in the use case of a end-
user willing to watch a live stream. He can thus select the
available servers and their upload bitrate. Both video players
are displayed on the screen, along with several QoE metrics.
The tester can thus see in real-time the average video bitrate
displayed, the number of rebuffering events, and the number
of resolution changes during the session.

Results. By taking into account clients real-time feedbacks,
Muslin enhances users’ QoE and fairness through multi-
source streaming with a small network overhead. In previous
experiments, we demonstrated an increase of 100 kbps in
median displayed bitrate, 2.5 less quality changes per minute,
and fewer rebufferings compared to a best-case CDN imple-
mentation. We also registered an increase of 19.6% in bitrate

Figure 5: Demo - Muslin client (left) selects multiple servers
to provide a high QoE and fairness, while the legacy CDN
client (right) receives content from a single server
fairness, 52% in quality changes fairness and 23.6% in re-
buffering fairness, using the F index described by T. Hoßfeld
et al. [14].

REFERENCES
[1] 2017. MS-Stream Demonstration: http://msstream.net. (2017).
[2] Cisco. 2016. VNI. (2016). cisco.com/c/en/us/solutions/

collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.pdf

[3] A. Flavel et al. 2015. Fastroute: A scalable load-aware anycast
routing architecture for modern cdns. connections 27 (2015).

[4] E. Nygren et al. 2010. The Akamai Network: A Platform for
High-performance Internet Applications. SIGOPS Oper. Syst.
Rev. (2010).

[5] J. Bruneau-Queyreix et al. 2017. A multiple-source adaptive
streaming solution enhancing consumer’s perceived quality. In
IEEE Consumer Communications and Networking Conference
(CCNC), demonstration track. Las vegas, United States.

[6] J. Bruneau-Queyreix et al. 2017. MS-Stream: A multiple-source
adaptive streaming solution enhancing consumer’s perceived qual-
ity. In IEEE Consumer Communications and Networking Con-
ference (CCNC). Las vegas, United States.

[7] J. Bruneau-Queyreix et al. 2017. QoE Enhancement Through
Cost-Effective Adaptation Decision Process for Multiple-Server
Streaming over HTTP. In IEEE International Conference on
Multimedia and Expo (ICME).

[8] J. Bruneau-Queyreix et al. 2018. Adding a new dimension to
HTTP Adaptive Streaming through multiple-source capabilities.
In IEEE Multimedia Magazine.

[9] M. Seufert et al. 2015. A Survey on Quality of Experience of
HTTP Adaptive Streaming. IEEE Communications Surveys and
Tutorials (2015).

[10] P. Georgopoulos et al. 2013. Towards Network-wide QoE Fair-
ness using OpenFlow-assisted Adaptive Video Streaming. ACM
SIGCOMM Workshop on Future Human-Centric Multimedia
Networking (2013).

[11] S. Petrangeli et al. 2015. QoE-Driven Rate Adaptation Heuristic
for Fair Adaptive Video Streaming. ACM Trans. Multimedia
Comput. Commun. Appl. (2015).

[12] S. Zhang et al. 2015. Presto: Towards fair and efficient HTTP
adaptive streaming from multiple servers. IEEE International
Conference on Communications (ICC) (2015).

[13] T. Hobfeld et al. 2011. Quantification of YouTube QoE via Crowd-
sourcing. In IEEE International Symposium on Multimedia.

[14] T. Hoßfeld et al. 2017. Definition of QoE Fairness in Shared
Systems. IEEE Communications Letters (2017).

[15] V. K. Adhikari et al. 2012. Unreeling netflix: Understanding and
improving multi-CDN delivery. IEEE INFOCOM (2012).

[16] W. Pu et al. 2011. Dynamic Adaptive Streaming over HTTP from
Multiple Content Distribution Servers. IEEE Global Telecommu-
nications Conference (GLOBECOM) (2011).

[17] A. Passarella. 2012. A survey on content-centric technologies
for the current Internet: CDN and P2P solutions. Computer
Communications (2012).

cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf

	Abstract
	1 Introduction
	2 Concepts: MS-Stream and MUSLIN
	2.1 MS-Stream
	2.2 MUSLIN: Multi-Source Live Streaming
	2.3 Implementation and scalability discussion

	3 Novelty of the work
	3.1 Multi-Source HTTP Adaptive Streaming
	3.2 Servers selection, QoE and fairness

	4 Demo description and setup
	References

