
Introduction to Docker
Containerization for Modern Development

Simon Da Silva

CESI

January 27, 2026

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 1 / 32

Agenda

1 What is Docker?

2 Containers vs Virtual Machines

3 Docker Terminology

4 Essential Docker Commands

5 Building Images with Dockerfile

6 Docker Networking

7 Data Persistence with Volumes

8 Docker Compose

9 Best Practices

10 Troubleshooting

11 Quick Reference

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 2 / 32

What is Docker?

World’s leading container platform

Packages applications with all dependencies

Creates standardized units called containers

Eliminates ”works on my machine” problems

docker-logo.png

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 3 / 32

Why Use Docker?

Key Benefits

¥ Consistency – Same behavior everywhere

¥ Isolation – No dependency conflicts

¥ Portability – Run anywhere (laptop, cloud, server)

¥ Efficiency – Lightweight, starts in seconds

¥ Scalability – Easy horizontal scaling

¥ Version Control – Images are versioned

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 4 / 32

Containers vs Virtual Machines

Virtual Machines

Full guest OS

GB of RAM/disk

Minutes to start

Heavy isolation

Complete OS included

Containers

Share host kernel

MB of disk space

Seconds to start

Process-level isolation

Only app + dependencies

Containers are lightweight and fast!

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 5 / 32

Architecture Comparison

Virtual Machines
App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Guest OS Guest OS Guest OS

Hypervisor

Host OS

Infrastructure

Containers
App A App B App C

Bins/Libs Bins/Libs Bins/Libs

Docker Engine

Host OS

Infrastructure

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 6 / 32

Essential Docker Terms

Image Read-only template with app code, libraries, dependencies

Container Running instance of an image

Dockerfile Text file with instructions to build an image

Docker Hub Public registry for Docker images

Volume Persistent data storage for containers

Network Virtual networks connecting containers

Docker Compose Tool for multi-container applications

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 7 / 32

Docker Architecture

Client-Server Model

Docker Client – CLI commands (docker run, etc.)

Docker Daemon – Manages images, containers, networks

Docker Registry – Stores Docker images (Docker Hub)

How docker run Works
1 Client sends command to daemon

2 Daemon checks if image exists locally

3 If not, pulls from registry

4 Creates container from image

5 Starts container and executes command

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 8 / 32

Working with Images

Pull an image from Docker Hub

$ docker pull nginx

List all local images

$ docker images

Remove an image

$ docker rmi nginx

Build an image from Dockerfile

$ docker build -t myapp .

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 9 / 32

Running Containers

Run a container (basic)

$ docker run nginx

Run in detached mode (background)

$ docker run -d nginx

Run with a name

$ docker run -d --name my-nginx nginx

Run with port mapping

$ docker run -d -p 8080:80 --name web nginx

Run interactively

$ docker run -it ubuntu bash

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 10 / 32

Managing Containers

List running containers

$ docker ps

List all containers (including stopped)

$ docker ps -a

Stop / Start / Restart

$ docker stop my-nginx

$ docker start my-nginx

$ docker restart my-nginx

Remove a container

$ docker rm my-nginx

Execute command in running container

$ docker exec -it my-nginx bash

View logs

$ docker logs -f my-nginx
Simon Da Silva (CESI) Introduction to Docker January 27, 2026 11 / 32

Dockerfile Instructions

FROM Base image to build upon

RUN Execute commands during build

COPY Copy files from host to image

WORKDIR Set working directory

ENV Set environment variables

EXPOSE Document container ports (documentation only!)

CMD Default command (can be overridden)

ENTRYPOINT Configure container as executable

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 12 / 32

Example Dockerfile

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .

RUN pip install --no-cache-dir -r requirements.txt

COPY app.py .

EXPOSE 5000

CMD ["python", "app.py"]

Note: Copy requirements.txt first for better layer caching!

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 13 / 32

Building and Running

Build the image

$ docker build -t my-python-app .

Run the container

$ docker run -d -p 5000:5000 my-python-app

Test it

$ curl http://localhost:5000

Layer Caching

Docker caches each layer. If a layer hasn’t changed, Docker reuses it. This is why we copy
requirements.txt before the application code.

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 14 / 32

Network Types

bridge Default for standalone containers (same host)

host Container uses host’s network directly

none No networking

overlay Multi-host networking (Docker Swarm)

Custom Networks

Better isolation

Automatic DNS resolution (containers communicate by name!)

Recommended for multi-container applications

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 15 / 32

Networking Commands

Create a custom network

$ docker network create my-network

Run containers on the network

$ docker run -d --name web1 --network my-network nginx

$ docker run -d --name web2 --network my-network nginx

Containers can now ping each other by name!

$ docker exec web1 ping web2

Inspect the network

$ docker network inspect my-network

List networks

$ docker network ls

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 16 / 32

Port Mapping

No port mapping (not accessible from host)

$ docker run -d --name web1 nginx

Random host port

$ docker run -d -p 80 --name web2 nginx

Specific host port

$ docker run -d -p 8080:80 --name web3 nginx

Check port mappings

$ docker port web3

Important

EXPOSE in Dockerfile is documentation only!
You must use -p to actually publish ports.

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 17 / 32

Volume Types

Problem

Containers are ephemeral – data is lost when they’re removed!

Named Volumes Managed by Docker (recommended for production)

Bind Mounts Mount host directory into container (dev use)

tmpfs Mounts Temporary in-memory storage

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 18 / 32

Volume Commands

Create a named volume

$ docker volume create my-data

List volumes

$ docker volume ls

Use volume with container

$ docker run -d -v my-data:/data alpine

Use bind mount (current directory)

$ docker run -d -v $(pwd):/app alpine

Remove unused volumes

$ docker volume prune

Inspect volume

$ docker volume inspect my-data

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 19 / 32

What is Docker Compose?

Definition

Tool for defining and running multi-container applications using a YAML file.

Benefits

Define entire application stack in one file

Single command to start/stop all services

Automatic network creation and service discovery

Easy environment configuration

Version controlled infrastructure

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 20 / 32

docker-compose.yml Example

services:

web:

build: ./frontend

ports:

- "3000:3000"

depends_on:

- db

environment:

- DATABASE_URL=postgresql://user:pass@db/mydb

db:

image: postgres:14-alpine

volumes:

- postgres-data:/var/lib/postgresql/data

environment:

- POSTGRES_PASSWORD=pass

volumes:

postgres-data:
Simon Da Silva (CESI) Introduction to Docker January 27, 2026 21 / 32

Docker Compose Commands

Start all services

$ docker compose up

Start in background

$ docker compose up -d

Rebuild and start

$ docker compose up --build

Stop and remove everything

$ docker compose down

Stop and remove (including volumes)

$ docker compose down -v

View logs

$ docker compose logs -f

List services

$ docker compose ps

Scale a service

$ docker compose up -d --scale worker=3

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 22 / 32

Health Checks

services:

db:

image: postgres:14-alpine

healthcheck:

test: ["CMD-SHELL", "pg_isready -U user"]

interval: 10s

timeout: 5s

retries: 5

start_period: 30s

web:

depends_on:

db:

condition: service_healthy

Why Health Checks?

depends on alone only waits for container to start, not for the service to be ready!
Simon Da Silva (CESI) Introduction to Docker January 27, 2026 23 / 32

Dockerfile Best Practices

¥ Use official base images

¥ Use specific image tags, not latest

¥ Minimize number of layers

¥ Use .dockerignore to exclude files

¥ Don’t run containers as root

¥ Use multi-stage builds for smaller images

¥ Pin dependency versions

¥ Copy dependencies file before application code

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 24 / 32

Docker Compose Best Practices

¥ Use depends on with health checks

¥ Define named volumes for persistence

¥ Use environment variables for configuration

¥ Set restart policies (unless-stopped)

¥ Use networks to isolate services

¥ Keep secrets in .env files (not in compose file!)

¥ Never commit .env files to version control

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 25 / 32

Example .dockerignore

Version control

.git

.gitignore

Dependencies

node_modules

__pycache__

*.pyc

Environment

.env

.venv

IDE

.vscode

.idea

Logs

*.log
Simon Da Silva (CESI) Introduction to Docker January 27, 2026 26 / 32

Common Issues & Solutions

Permission Denied

$ sudo usermod -aG docker $USER
$ newgrp docker

Docker Daemon Not Running

$ sudo systemctl start docker

$ sudo systemctl enable docker

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 27 / 32

Useful Debug Commands

View container resource usage

$ docker stats

Inspect container details

$ docker inspect <container>

Check container processes

$ docker top <container>

Copy files from container

$ docker cp <container>:/path/file .

View Docker disk usage

$ docker system df -v

Clean up everything

$ docker system prune -a --volumes

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 28 / 32

Command Cheat Sheet

Images

docker images

docker pull <image>

docker build -t <name> .

docker rmi <image>

Containers

docker ps / docker ps -a

docker run <image>

docker stop/start <container>

docker rm <container>

docker logs <container>

docker exec -it <c> bash

Docker Compose

docker compose up [-d]

docker compose down [-v]

docker compose logs -f

docker compose ps

docker compose build

Cleanup

docker system prune -a

docker volume prune

docker network prune

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 29 / 32

Summary

What You’ve Learned

What Docker is and why it matters

Difference between containers and VMs

Essential Docker commands

Building images with Dockerfiles

Docker networking and volumes

Multi-container apps with Docker Compose

Best practices and troubleshooting

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 30 / 32

Resources

[Docker Documentation: https://docs.docker.com

o Docker Hub: https://hub.docker.com

§ Docker GitHub: https://github.com/docker

Compose Reference: https://docs.docker.com/compose/compose-file/

Questions?

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 31 / 32

https://docs.docker.com
https://hub.docker.com
https://github.com/docker
https://docs.docker.com/compose/compose-file/

Thank You!

Time for hands-on practice!

Simon Da Silva (CESI) Introduction to Docker January 27, 2026 32 / 32

	What is Docker?
	Containers vs Virtual Machines
	Docker Terminology
	Essential Docker Commands
	Building Images with Dockerfile
	Docker Networking
	Data Persistence with Volumes
	Docker Compose
	Best Practices
	Troubleshooting
	Quick Reference

