
THESE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR DE

L’UNIVERSITÉ DE BORDEAUX

École Doctorale Mathématiques et Informatique

Spécialité Informatique

Simon Da Silva

DIFFUSION VIDÉO AVEC UNE
MEILLEURE QUALITÉ D’EXPÉRIENCE ET

RESPECTANT LA VIE PRIVÉE

HIGH-QOE PRIVACY-PRESERVING VIDEO STREAMING

Sous la direction de :
Daniel Négru

Laurent Réveillère

Soutenue le mercredi 07 octobre 2020

Membres du jury :
Sonia Ben Mokhtar Directeur de Recherche, LIRIS-CNRS . Invitée
Sara Bouchenak Professeur, INSA Lyon . Rapporteuse
Yérom-David Bromberg Professeur, Université de RennesExaminateur
Pascal Desbarats Professeur, Université de Bordeaux Président du jury
Daniel Négru Maître de Conférences, Université de BordeauxCo-directeur de thèse
Evangelos Pallis Professeur, Université Hellénique Méditerranéenne Rapporteur
Laurent Réveillère Professeur, Université de Bordeaux Co-directeur de thèse

Résumé

Titre : Diffusion Vidéo avec une Meilleure Qualité d’Expérience et Respectant la Vie
Privée

La diffusion vidéo devrait atteindre 82% du trafic total sur Internet en 2022. Il y a deux
raisons à ce succès : la multiplication des sources de contenu vidéo et la démocratisation
des connexions haut débit à Internet. Les principales plateformes de streaming vidéo
dépendent d’infrastructures planétaires pour répondre à la demande croissante en qualité
visuelle. Cependant, l’utilisation de ces plateformes génère des données personnelles
sensibles (sous la forme d’historiques de visionnage). Protéger les intérêts des utilisateurs
est nécessaire pour une nouvelle génération de services de streaming vidéo respectueux
de la vie privée.

Cette thèse propose une nouvelle approche pour du streaming vidéo temps-réel multi-
sources en délivrant du contenu avec une meilleure qualité d’expérience (délai de démarrage
rapide, flux stable en haute qualité, pas de coupures) tout en permettant une protection
de la vie privée (grâce aux environnements d’exécution de confiance).

Mots-clés : Streaming, Sécurité, Vie Privée, Cloud, Informatique de confiance, Qualité
d’expérience

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Unité Mixte de Recherche CNRS (UMR 5800)

351 cours de la Libération, 33400 Talence, France

iii

Abstract

Title: High-QoE Privacy-Preserving Video Streaming

Video streaming is expected to exceed 82% of all Internet traffic in 2022. There are two
reasons for this success: the multiplication of video sources and the pervasiveness of high
quality Internet connections. Dominating video streaming platforms rely on large-scale
infrastructures to cope with an increasing demand for high quality of experience and
high-bitrate content. However, the usage of video streaming platforms generates sensitive
personal data (the history of watched videos), which leads to major threats to privacy.
Hiding the interests of users from servers and edge-assisting devices is necessary for a
new generation of privacy-preserving streaming services.

This thesis aims at proposing a new approach for multiple-source live adaptive streaming
by delivering video content with a high quality of experience to its users (low start-up
delay, stable high-quality stream, no playback interruptions) while enabling privacy
preservation (leveraging trusted execution environments).

Keywords: Streaming, Security, Privacy, Cloud, TEE, QoE

Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Unité Mixte de Recherche CNRS (UMR 5800)

351 cours de la Libération, 33400 Talence, France

v

Remerciements

En m’engageant dans la recherche académique, j’espérais partager ouvertement des
techniques, des connaissances, de l’expérience, et travailler avec des hommes et femmes
du monde entier. De nombreuses communautés de chercheurs existent et forment des
cercles (malheureusement bien souvent fermés) mêlant collaboration et amitié. J’ai eu la
chance d’intégrer l’une d’elles et de travailler avec des gens sympathiques, compétents et
ouverts. Les travaux de recherche exposés dans ce manuscrit auraient donc été impossible
sans l’aide, la vision et l’implication d’un nombre important de personnes, et le soutien,
la présence, le réconfort de beaucoup autres.

Pour commencer, je tiens à remercier mes deux directeurs de thèse, Daniel et Laurent.
Vous avez su me montrer une voie passionnante et me faire progresser pas à pas, en
m’encadrant avec justesse et sagesse. Vous avez levé les verrous techniques, administratifs
et financiers que j’ai pu rencontrer sur mon chemin. Grâce à votre confiance, j’ai présenté
nos travaux, voyagé, et collaboré avec des gens d’horizons différents. Merci à Mathias.
Tu as rendu possibles les différentes contributions présentées dans cette thèse, que ce
soit par ton code, ton aide technique, ton soutien ou ta bonne humeur. Tu as été le
meilleur des canards,1 et m’a permis de garder une motivation inébranlable tout au long
de ces années en étant toujours présent, attentif, attentionné et bienveillant. Merci à
Joachim. Tu m’as beaucoup appris et fait gagner un temps précieux par tes retours,
ton aide, tes contributions, et tout le travail effectué, sur lequel se basent beaucoup de
nos contributions présentées dans ce document. Merci à Stefan, David, Éric, Moubarak
et Hamza. Vous avez activement contribué à la réalisation de plusieurs des solutions,
toujours dans la joie et la bonne humeur. Merci à Sonia et Étienne. Vous êtes à l’origine
de nombreuses idées et d’une très grande proportion du contenu des articles. Votre
expérience, vision et implication ont permis à PrivaTube et PProx d’exister, et d’être
présentés sous leur forme actuelle. Merci à Guillaume. Ce fut un plaisir de travailler

1https://fr.wikipedia.org/wiki/M%C3%A9thode_du_canard_en_plastique

vii

https://fr.wikipedia.org/wiki/M%C3%A9thode_du_canard_en_plastique

avec toi, pour ta compétence, ta disponibilité et ton implication. PProx est le fruit
d’une collaboration scientifique et technique regroupant activement toutes les personnes
impliquées, et n’aurait jamais existé concrètement sans ton dévouement. En outre, je tiens
aussi à remercier tous les membres du laboratoire et de l’équipe, le personnel administratif
et financier, et tous les gens de l’université qui ont égayé et/ou facilité mon quotidien ces
dernières années.

Sur un autre registre, je ne serais jamais arrivé au bout de ce doctorat sans le soutien
moral quotidien des doctorants du laboratoire. Merci à Rohan, mon compagnon de soir
et de tout jour. Tu as été présent, attentif, attentionné, compréhensif, et complice de
beaucoup d’aventures mémorables. Tu as égayé de nombreux épisodes de ma vie, et
permis de réaliser des rêves, que ce soit par le biais de l’AFoDIB ou autrement. Merci
à Léo, notre fidèle compagnon de bureau.2 Ton optimisme, ta bienveillance et bonne
humeur étaient très précieuses. Merci à tous les copains de l’association et d’en dehors :
Alex, Christelle, Pierre-Étienne, Tina, Paul, Jason, Rémi, Julien, Jonathan, Luis, Raph,
Jérôme, Rémi, Henri, Mohammed, Théodore, Samah, et les nombreux autres que j’oublie.
Vous êtes tous géniaux et méritez chacun une double-dose de compliments.

Je tiens à remercier tous mes autres amis,3 à qui je dois beaucoup. Merci à Rémi,4

Titouan, Clément, Imane, Sylvain, Pierre, et tous les autres qui feraient déborder ces
remerciements.5 Les aventures, divertissements, conseils et tranches de vie partagées avec
vous m’ont permis de me construire et, éventuellement, d’en arriver à écrire ce manuscrit.

Enfin, merci à ma famille, toujours présente, toujours compréhensive, toujours positive.
Merci à mes parents, Françoise, Antonio, et Laurent, Dominique. Vous m’avez apporté
un soutien sans faille et un confort moral, psychologique et matériel, tout au long de
ma vie. Grâce à vous, j’ai toujours été libre de faire des études sans me préoccuper du
reste, confiant et serein, avec toujours un endroit ou revenir, que ce soit physiquement,
moralement ou verbalement. Merci à Caroline, ma pacsenaire, comparse de vie ici et là,
pour tout ce que tu fais pour nous. Tu m’as fait découvrir un pan de la vie que j’ignorais,
et ton soutien quotidien m’est inestimable. Merci au reste de ma famille, cousins, cousines,
oncles et tantes, avec qui j’ai grandi dans une atmosphère saine et protectrice.

2Quand tu y étais.

3Un grand nombre des personnes citées précédemment sont évidemment mes amis.

4Encore un !

5Oups, ils ont déjà débordé de deux pages. Tant pis, continuons donc la liste : Merci à Auriane,
Antoine, Florian, Chloë, Théophile, Paul, Pierre, Nathan, Bastien, Jérémy, Sylvestre, Dorian...

viii

Comme ceux mentionnés ici le savent, j’aime communiquer et vulgariser les sujets
important à mes yeux, que ce soit avec des gribouillis sur un tableau, avec des slides, en
vidéo, ou juste à l’oral, assis dans un bar ou entre deux portes. Mais, indépendamment
du niveau de vulgarisation que je pourrais utiliser, il me sera à jamais impossible de
communiquer mes passions, occupations et préoccupations à certaines personnes. Je dédie
donc ce manuscrit aux membres de ma famille qui m’auraient probablement toujours
soutenu aveuglément mais sont, physiquement ou mentalement, partis trop tôt.

— Simon Claude Victor Da Silva

ix

Contents

Résumé iii

Abstract v

Remerciements vii

Table of Contents xi

List of Acronyms xvii

List of Equations xix

List of Figures xxi

List of Tables xxv

1 Introduction 1

1.1 Motivation . 1

1.2 Challenges and objective . 7

1.3 Thesis overview . 8

2 Background 11

2.1 Traditional video encoding and delivery 12

2.2 Adaptive Streaming . 12

2.2.1 Dynamic Adaptive Streaming over HTTP 12

xi

2.2.2 Other HTTP Adaptive Streaming (HAS) solutions 13

2.2.3 Multiple-source streaming . 15

3 Related work 19

3.1 Video streaming . 20

3.1.1 Edge-assisted and Peer-to-Peer streaming platforms 20

3.1.2 WebRTC . 21

3.1.3 CDN-based streaming platforms architectures 22

3.2 Privacy-preserving streaming . 23

3.2.1 Unlinkability-based solutions . 24

3.2.2 Designing privacy-preserving systems using Intel SGX 25

3.3 Recommender systems . 26

3.3.1 Recommendation-as-a-Service . 26

3.3.2 Privacy issues for Recommendation-as-a-Service 27

3.3.3 Privacy-preserving Recommendation-as-a-Service 27

4 Muslin: High-QoE cost-efficient multi-source streaming 33

4.1 Introduction . 33

4.2 Muslin: Multi-Source Live Streaming . 35

4.2.1 Provisioning module . 37

4.2.2 Selection module . 39

4.2.3 Implementation and scalability discussion 40

4.3 Experimental setup . 41

4.3.1 Provisioning, forecast, advertising and delivery policies 41

4.3.2 Servers and clients setup . 42

4.4 Evaluation results . 44

4.4.1 Delivery solutions . 45

4.4.2 Provisioning cost . 46

xii

4.4.3 Quality of Experience . 47

4.4.4 QoE fairness . 48

4.4.5 Network overhead . 49

4.4.6 Experiments summary and discussion 49

4.5 Conclusion . 50

5 PrivaTube: Privacy-preserving edge-assisted streaming 53

5.1 Introduction . 53

5.2 System model and objectives . 56

5.3 Practical and High-QoE Streaming . 58

5.3.1 Edge-assisted Content Delivery Network 58

5.3.2 Adaptive Streaming . 59

5.3.3 Implementation . 60

5.4 Privacy . 61

5.4.1 Trusted execution environments . 61

5.4.2 Fake requests . 63

5.5 Discussion . 65

5.5.1 Security Analysis . 65

5.5.2 Limitations . 67

5.6 Evaluation . 69

5.6.1 Experimental setup . 69

5.6.2 Performance of video servers . 71

5.6.3 Impact of assisting peers . 73

5.6.4 Fake requests and pre-fetching policies 76

5.7 Conclusion . 79

6 PProx: High-QoE privacy-preserving Recommendation as a Service 83

6.1 Introduction . 83

xiii

6.2 System model and objectives . 86

6.2.1 System model . 86

6.2.2 Trust and operational assumptions 86

6.2.3 Privacy objectives and adversary model 88

6.3 PProx in a nutshell . 89

6.4 PProx protocol design . 90

6.4.1 Provision and use of cryptographic material 91

6.4.2 Transparent REST calls redirection 92

6.4.3 Requests and response shuffling . 95

6.5 Security analysis . 96

6.5.1 User-Interest Unlinkability . 97

6.5.2 Impact of Shuffling . 99

6.5.3 Limitations . 99

6.6 Integration and Reproducibility . 100

6.6.1 Workload injection and stub Legacy Recommendation System (LRS)101

6.6.2 Experimental reproducibility . 101

6.7 Implementation . 101

6.8 Evaluation . 103

6.8.1 Micro-benchmarks . 105

6.8.2 Macro-benchmarks: PProx with the Harness LRS 108

6.9 Conclusion . 111

7 Conclusion and further directions 113

7.1 Contributions summary . 113

7.2 Further research directions . 115

7.3 Closing remarks . 117

Bibliography 119

xiv

Appendix A Publications 139

A.1 PProx . 139

A.2 PrivaTube . 139

A.3 Muslin . 140

A.4 MS-Stream . 140

A.5 Awards . 140

Appendix B Résumé étendu 141

B.1 Introduction . 141

B.2 Motivation . 143

B.3 Contexte . 144

B.4 Muslin . 146

B.5 PrivaTube . 147

B.6 PProx . 149

B.7 Conclusion . 150

xv

List of Acronyms

AS Autonomous System

CAP Candidate Assisting Peer

CDN Content Delivery Network

DASH Dynamic Adaptive Streaming over HTTP

GoP Group of Pictures

HAS HTTP Adaptive Streaming

ISP Internet Service Provider

LRS Legacy Recommendation System

MPD Media Presentation Description

OTT Over-The-Top

P2P Peer-to-Peer

PIR Private Information Retrieval

RaaS Recommendation-as-a-Service

QoE Quality of Experience

SGX Software Guard Extensions

TEE Trusted Execution Environment

VoD Video on Demand

xvii

List of Equations

Equation 4.1 Audience forecast . 37

Equation 4.2 Corrective coefficient . 38

Equation 4.3 Throughput estimation . 38

Equation 4.4 Server Ranking Score . 38

Equation 4.5 Client-specific Ranking Score . 39

Equation 4.6 Feedback request probability . 41

Equation 4.7 QoE fairness F index . 49

Equation 5.1 Number of fake requests in the system 65

xix

List of Figures

Figure 1.1 Content Delivery Network illustration 2

Figure 1.2 DASH illustration . 3

Figure 1.3 DASH congestion illustration . 4

Figure 1.4 Edge-assisted Content Delivery Network illustration 5

Figure 1.5 Privacy illustration . 6

Figure 2.1 Video compression frame types 11

Figure 2.2 DASH standard content delivery overview 13

Figure 2.3 MS-Stream illustration . 15

Figure 2.4 Multi-source adaptive streaming with MS-Stream 16

Figure 2.5 MS-Stream sub-segment generation and composition 17

Figure 3.1 Principle of Recommendation-as-a-Service 26

Figure 4.1 Muslin overview . 34

Figure 4.2 If nearby content servers are overloaded, the Muslin server selects

and advertises other content servers with a higher Ranking Score

RSsc to the client. 35

Figure 4.3 Muslin system architecture overview 37

Figure 4.4 Muslin RSsc-based servers selection example 40

Figure 4.5 US map with points of presence and clients 43

Figure 4.6 AGDQ audience trace . 44

xxi

Figure 4.7 Number of rebufferings (per minute), 3 servers testbed (top), 16

servers testbed (bottom) . 45

Figure 4.8 Displayed bitrate (Mbps), selected setups 48

Figure 4.9 Quality changes per minute, selected setups 48

Figure 4.10 Network overhead (%), selected setups 49

Figure 5.1 PrivaTube illustration . 54

Figure 5.2 PrivaTube fake requests illustration 55

Figure 5.3 Streaming using video servers and assisting peers 58

Figure 5.4 PrivaTube architecture for privacy preservation through HTTP

proxies and servers inside SGX enclaves 62

Figure 5.5 Cumulative distribution of latencies over 200 requests for a 6-

second segment in various bitrates in DASH, ClearTube and

PrivaTube without using network emulation. Note that the

abscissa uses a logarithmic scale. 69

Figure 5.6 Throughput and latency for DASH, ClearTube and Priva-

Tube, without using network emulation. The inflection shows the

saturation point of the three solutions. 70

Figure 5.7 Distributions of segments download times 73

Figure 5.8 Distribution of achieved playback bitrates 74

Figure 5.9 Distribution of movies popularities in MovieLens 77

Figure 5.10 Replicas increase factor, δ = 50% 78

Figure 6.1 PProx illustration . 84

Figure 6.2 PProx system constituents (À-Ä in §6.2.1) and adversary model

(Ê-Í in §6.2.3) . 87

Figure 6.3 Lifecycle of a post request (insert feedback) 93

Figure 6.4 Lifecycle of a get req. (collect recommendations) 95

xxii

Figure 6.5 Shuffling disallows the adversary from determining which of S

(here S = 3) incoming requests to the UA layer corresponds to a

specific request sent to the LRS. The same strategy is applied to

responses from the LRS. 96

Figure 6.6 Performance of the proxy service with no security-enabling feature

(m1), when adding encryption (m2), and when adding the use of

SGX enclaves (m3); Impact of disabling item pseudonymization

(m4). 106

Figure 6.7 Impact of shuffling: reference configuration with no shuffling (m3),

and with S = 5 (m5) and S = 10 (m6). 107

Figure 6.8 Scalability of PProx using 1 (m6) to 4 (m9) instances in each proxy

layer (2 to 8 nodes), using all privacy-enabling features and S = 10. 108

Figure 6.9 Baseline performance of the Harness LRS 109

Figure 6.10 Performance of Harness when used in combination with PProx

with increasingly large deployments 110

Figure B.1 Streaming adaptatif sur HTTP 142

Figure B.2 Congestion d’un serveur DASH 143

Figure B.3 Aggrégation de bande passante avec MS-Stream 145

Figure B.4 Vue d’ensemble de Muslin . 146

Figure B.7 Architecture de PrivaTube . 148

Figure B.8 Vue d’ensemble de PProx . 149

xxiii

List of Tables

Table 3.1 State of the Art digest . 30

Table 4.1 Provisioning, audience forecast, selection policies, and delivery pro-

tocols . 41

Table 4.2 Available servers for each setup . 43

Table 4.3 Available video qualities . 45

Table 4.4 Total relative cost (server time), 16 servers testbed 47

Table 4.5 Selected provisioning, forecast, selection, delivery policies, and testbed 47

Table 4.6 QoE fairness (F index), selected setups 48

Table 5.1 Replicas increase factor for various values of δ 79

Table 6.1 Notations . 91

Table 6.2 Micro-benchmark configurations. 105

Table 6.3 Macro-benchmark experimental configurations. 109

xxv

Chapter 1

Introduction

I’ve learned that people will forget what you said, people will
forget what you did, but people will never forget how you made
them feel.

— Maya Angelou

Many new trends appeared with the democratization of the Internet. Video con-
tents began to increase both in quantity and in quality, thanks to platforms such as
YouTube [You20], Vimeo [Vim20] or Dailymotion [Dai20], all providing income through
ads and sponsors. People look for specialized contents, which they can now consume
on several devices (desktop and laptop computers, tablets, smartphones, smart TVs,
etc.) whenever they want to. For these reasons, Video on Demand (VoD) services first
emerged, followed by live streaming. Over-The-Top (OTT) delivery, thanks to websites,
apps or set-top-boxes, is currently the most widespread way to deliver video content to
consumers.

1.1 Motivation

Video streaming represented more than 60% of all Internet traffic [San19] and 65%
of worldwide mobile downstream traffic in 2020 [San20]. According to Cisco [Cis18],
video traffic is experiencing a tremendous growth and is expected to exceed 82% of the
total Internet traffic by 2022, and live video will grow 15-fold to reach 17% of all video
traffic by 2022. Two reasons account for this success: the multiplication of video sources
(e.g., video streaming catalogs, online TV channels, personal videos sharing) and the
pervasiveness of high-quality Internet connections. Most of the time, although traffic

Simon Da Silva — Univ. Bordeaux, LaBRI 1 High-QoE Privacy-Preserving Video Streaming

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

increase is rightfully forecast, core networks capacities are not upgraded due to the high
cost of such an operation. Major issues consequently arise with respect to the Quality of
Experience (QoE) of such services. Providing a high and fairly shared among users QoE
is thus a rising issue as servers and network links become overloaded.

Figure 1.1: Content Delivery Network illustration

Dominating video streaming platforms rely on large-scale infrastructures to cope
with an increasing demand for high QoE and high-bitrate content. Content Delivery
Networks (CDNs) are extensively used for the delivery of video content over the
Internet (see Figure 1.1). For instance, YouTube [You20], Netflix [Net20] or Twitch [Twi20]
have set up planetary-scale proprietary CDNs [DTCU17, BCT+18, AJCZ12, AGH+12].
They further deploy extra CDN nodes directly inside Internet Service Providers (ISPs)
networks (e.g., Google Global Caches) and negotiate special peering relations with their
Autonomous Systems (AS) [MBDC18]. Other platforms can rely on existing third-party
CDNs to serve content. Dailymotion [Dai20] is reported to use the CDNs of Orange,
Akamai and Limelight to scale video delivery in different parts of the world [BAGV18]. In
such architectures, geographically distributed replica servers located as close as possible
to the consuming clients are provisioned in advance with sufficient capacities using
estimates of the expected workload. When accessing a content, consuming clients are
automatically re-directed to the closest server to temper network congestion and achieve
higher throughput.

In addition to CDN-based solutions, streaming services usually rely on HTTP
Adaptive Streaming (HAS) solutions, such as the widely adopted Dynamic Adaptive
Streaming over HTTP (DASH) standard from MPEG, or Apple’s HTTP Live Streaming
(HLS). These solutions enable consuming clients to dynamically adjust the requested

Simon Da Silva — Univ. Bordeaux, LaBRI 2 High-QoE Privacy-Preserving Video Streaming

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

content bitrate according to the observed network conditions or to the client buffer
occupancy (see Figure 1.2).

HQ

LQ

SQ

HQ

LQ

SQ

LQ

HQ

LQ

SQ

HQ

LQ

SQ

HQ

LQ

SQ

Figure 1.2: DASH illustration

However, as shown in Figure 1.3, if a large amount of end-users located under the
same geographic area is simultaneously consuming the same streamed content, the nearest
server can rapidly become overloaded. Some users may consequently suffer throughput
degradation or content unavailability, and may experience a poor or unfairly shared QoE
as they compete for limited network and server resources.

Although CDN solutions can handle a large volume of requests, they laboriously
adapt to the highly dynamic and volatile nature of live streaming service audiences.
As a consequence, the streaming infrastructure can rapidly be either over-scaled hence
uselessly too expensive, or under-sized and thus delivering degradated QoE to end-users.
Dedicated CDNs require a high up-front investment, and third-party CDNs incur high

Simon Da Silva — Univ. Bordeaux, LaBRI 3 High-QoE Privacy-Preserving Video Streaming

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

Clients

Figure 1.3: DASH congestion illustration

operational costs. The use of an edge-assisted CDN (see Figure 1.4) is an appealing
alternative for smaller players or platforms that do not need to monetize their users’
personal data to sustain their activity, such as the free and open PeerTube [Peeb] network.
Edge-assisted CDNs complement core dedicated servers with the direct exchange of video
content between end-users’ devices. Examples of platforms using an edge-assisted CDN
are LiveSky [YLZ+09], Peer5 [Peea], PeerTube [Peeb], Quanteec [Qua], Streamroot [Str]
and Kankan [ZLHC14].

Simon Da Silva — Univ. Bordeaux, LaBRI 4 High-QoE Privacy-Preserving Video Streaming

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

CDN
servers

Peers

Figure 1.4: Edge-assisted Content Delivery Network illustration

Simon Da Silva — Univ. Bordeaux, LaBRI 5 High-QoE Privacy-Preserving Video Streaming

CHAPTER 1. INTRODUCTION 1.1. MOTIVATION

Browsing on video streaming platforms generates an access history of watched content,
specific for each user. This history can be leveraged for the benefit of the user, e.g.,
allowing personalized recommendations for new videos, or for the benefit of the platform,
e.g., for targeted advertising. However, the generation and availability of access histories
also leads to major threats to privacy (see Figure 1.5).

CDN
servers

Peers Content
Delivery

Figure 1.5: Privacy illustration

Indeed, this data can be used to infer private information about the user, such
as his gender, his origin, and his political, religious or sexual orientation. Kandias et
al. [KMSG13] show for instance that the political affiliation of YouTube users can easily be
extracted from their access histories. Luo et al. [LXZ+14] similarly show how a household
composition can be deduced.

Simon Da Silva — Univ. Bordeaux, LaBRI 6 High-QoE Privacy-Preserving Video Streaming

CHAPTER 1. INTRODUCTION 1.2. CHALLENGES AND OBJECTIVE

1.2 Challenges and objective

Based on the current video streaming situation, two main challenges are foreseen to be
tackled. The first one is to provide users with a high and fairly shared QoE. The second
one is to protect users’ privacy when using video streaming platforms.

Quality of Experience The target is an OTT video streaming service model, consist-
ing of a video player in a web browser allowing users to select and play video content from
a publicly-known catalog. Achieving high-QoE delivery is a multi-criteria optimization.
It consists in (1) provisioning a content bitrate that is not only the highest possible but
also the stablest possible, (2) minimizing the amplitude and occurrence of variations in
quality, (3) avoiding video interruptions and (4) ensuring a fast startup time. Continuity
and stability of the video playback, together with fast startup times, are the main factors
that strongly impact the users’ viewing experience [SES+14].

Privacy for video streaming Protecting users’ privacy in a video streaming system
requires hiding their access histories from providers and other users. Anonymizing
networks such as Tor (The Onion Routing) [DMS04] allow to hide the identity of
the client of a service. Onion routing, Tor’s central mechanism, requires multi-hop
forwarding and cryptographic operations at each relay server. Tor is therefore well-
suited to web browsing but completely ill-suited for high-bandwidth video delivery.
Besides, fully decentralized, gossip-based broadcast protocols such as PAG [DMPQ16]
allow to hide the source and destination of messages, but similarly come at a high
cost, due to resource-intensive homomorphic hashing. PAG further consumes three
times the bandwidth of the transferred payload for compulsory control messages to
enforce accountability. This is also not compatible with video streaming bandwidth
requirements. Some streaming services with privacy as a design goal have been proposed
as well [GCM+16, RVN+16, dSDR16, NPS04]. All these solutions target fully Peer-to-
Peer approaches, without core servers, which results in limited guarantees in terms of
QoE, as video discovery is a best effort and unreliable operation, and the lack of a reliable
authoritative source means that videos of low popularity are only served with very low
reliability. The challenge is to provide a privacy-preserving video streaming solution
which does not impair the Quality of Experience.

Objective This thesis aims at proposing a practical privacy-preserving video streaming
system, providing both a high Quality of Experience and strong privacy guarantees
to its users, without quality or performance degradation, at the lowest monetary cost.

Simon Da Silva — Univ. Bordeaux, LaBRI 7 High-QoE Privacy-Preserving Video Streaming

CHAPTER 1. INTRODUCTION 1.3. THESIS OVERVIEW

1.3 Thesis overview

Our first approach towards increasing QoE and decreasing costs is Muslin, a dynamic
server provisioning and advertising system. Then, we propose PrivaTube, the first video
streaming system to provide strong privacy guarantees with unaltered QoE compared to
traditional HAS streaming. Finally, we present PProx, a high-performance solution to
provide privacy-preserving recommendations in video streaming systems.

The rest of this thesis is organized as follows:

• Chapter 2 - Background provides technical background about HTTP Adaptive
Streaming and MS-Stream, a DASH standard extension to aggregate bandwidth
from multiple sources to increase video quality and drastically reduce rebufferings.

• Chapter 3 - Related work presents related research work and the State of the Art
of streaming platforms architectures, techniques for privacy-preserving streaming,
and privacy-preserving recommender systems.

• Chapter 4 - Muslin: High-QoE cost-efficient multi-source streaming describes the
Muslin solution. It uses dynamic server provisioning and advertising based on
real-time delivery conditions combined with multiple-source video streaming to
provide a better QoE at the lowest cost.

• Chapter 5 - PrivaTube: Privacy-preserving edge-assisted streaming details the
design and implementation of PrivaTube. It offers a high QoE by aggregating video
content from multiple servers and edge peers. Users’ privacy is preserved through
encryption in HTTP proxies running in Intel SGX enclaves, and fake requests
to obfuscate access patterns. Fake requests are further leveraged to implement
proactive provisioning and improve QoE.

• Chapter 6 - PProx: High-QoE privacy-preserving Recommendation as a Service
presents PProx and how it complements video streaming systems. PProx provides
pseudonymous and private recommendations with unaltered accuracy and excellent
performance, as it supports arbitrary recommendation algorithms and has minimal
deployment requirements. PProx design leverages an elastically scalable network
of proxies to transparently pseudonymize users over a fleet of Intel SGX-enabled
machines. PProx privacy guarantees are robust to even the corruption of one of the
SGX enclaves.

• Chapter 7 - Conclusion and further directions concludes the thesis, summarizes the
contributions and presents insight on possible further research directions.

Simon Da Silva — Univ. Bordeaux, LaBRI 8 High-QoE Privacy-Preserving Video Streaming

Summary

Two main challenges are to be tackled: (i) to provide a high and fairly shared QoE to
end-users; (ii) to protect users’ privacy on streaming platforms.
This thesis aims at proposing a practical privacy-preserving video streaming system,
providing both a high Quality of Experience and strong privacy guarantees to its users,
without quality or performance degradation, at the lowest monetary cost.

Simon Da Silva — Univ. Bordeaux, LaBRI 9 High-QoE Privacy-Preserving Video Streaming

Chapter 2

Background

You know, they say an elephant never forgets. But what they
don’t tell you is that you never forget an elephant.

— Bill Murray

A video is a sequence of pictures consecutively displayed to trick the human eye into
seeing motion, which requires at least 16 frames per second. Nowadays, most movies
display 24 to 60 frames per second, and up to several hundreds of images per second for
some applications (e.g., sports or video gaming). Consequently, as each picture can weigh
up to a few megabytes, videos require a lot of data to be stored, delivered and displayed.
This entails the use of compression algorithms, referred to as codecs.

Figure 2.1: Video compression frame types

Simon Da Silva — Univ. Bordeaux, LaBRI 11 High-QoE Privacy-Preserving Video Streaming

CHAPTER 2. BACKGROUND 2.1. TRADITIONAL VIDEO ENCODING AND DELIVERY

2.1 Traditional video encoding and delivery

Most codecs aim at reducing redundancy in videos (i.e., wasted storage space) by
computing movement vectors between consecutive frames and storing them instead of
a whole picture. They traditionally use three types of frames: Intra (I) frames, which
are standalone pictures; Predicted (P) and Bidirectional (B) frames, made of movement
vectors computed from either previous (P) or both previous and next (B) frames (see
Figure 2.1). The self-contained series of an I-frame followed by several B and P frames is
called a Group of Pictures (GoP), and typically encodes a few hundred milliseconds of
footage.

Video content delivery solutions have evolved a lot during the last three decades. Video
streaming over the Internet appeared in the early 1990s. Many solutions were developed,
such as RTP (Real-time Transport Protocol) / RTCP (RTP Control Protocol) [SCFJ03]
in 1993, RTSP (Real Time Streaming Protocol) [SRL98] in 1993 and RTMP (Real-
Time Messaging Protocol) [Ado20] in 1996. However, these solutions lack adaptation to
changing network conditions, often resulting in playback stalls.

2.2 Adaptive Streaming

Since the late 2000s, HAS solutions have seen important interest in the industry and re-
search, mainly due to their capabilities to render smooth video playback to the consumers,
hence a better QoE. The overwhelming majority of OTT platforms now implement HAS
solutions.

Various HAS solutions have emerged, such as Adobe HDS (HTTP Dynamic Stream-
ing) [Ado18], Apple HLS (HTTP Live Streaming) [App18] or MSS (Microsoft Smooth
Streaming) [Mic18]. In the early 2010s, the MPEG (Moving Picture Experts Group),
formed by ISO (International Organization for Standardization) and IEC (International
Electrotechnical Commission) and joined by most multimedia organizations, published
the MPEG-DASH (Dynamic Adaptive Streaming over HTTP) standard [Sod11] in an
attempt to federate all efforts towards a single solution.

2.2.1 Dynamic Adaptive Streaming over HTTP

The DASH standard, widely adopted in the industry and deployed by companies such
as YouTube, Netflix, Facebook or Twitch, is now the leading standard for delivering

Simon Da Silva — Univ. Bordeaux, LaBRI 12 High-QoE Privacy-Preserving Video Streaming

CHAPTER 2. BACKGROUND 2.2. ADAPTIVE STREAMING

Figure 2.2: DASH standard content delivery overview

video (along with Apple’s HLS, which is technically very similar). DASH aims at
delivering uninterrupted multimedia content through the network via conventional HTTP
(Hypertext Transfer Protocol) traffic [Sod11]. It uses HTTP on top of TCP (Transmission
Control Protocol) or QUIC [Goo20].

As shown in Figure 2.2, video content is split into segments of a few seconds (usually
one to ten seconds) containing several GoPs, similarly to traditional streaming. However,
different qualities (i.e., in terms of bitrates) are encoded and made available for each
segment. A DASH client can then dynamically switch between bitrates to adapt to
changing network conditions, e.g., when its download capacity decreases. The client
maintains a buffer of video segments. The adaptation uses a combination of the buffer size
and the prediction of future download times, with the objective of avoiding rebufferings.

Media Presentation Description

A manifest file, the Media Presentation Description (MPD), details the representations
that are available for every segment and also provides a list of servers where these
segments can be accessed at. The MPD is initially handed out to the client, which then
proceeds to retrieve the segments at the desired quality directly from video servers.

2.2.2 Other HAS solutions

Proprietary commercial systems such as HDS, HLS or MSS are following the same
principles. The clients first download a manifest file, and then video segments. Technical

Simon Da Silva — Univ. Bordeaux, LaBRI 13 High-QoE Privacy-Preserving Video Streaming

CHAPTER 2. BACKGROUND 2.2. ADAPTIVE STREAMING

specifications do not enforce specific quality adaptation mechanisms. However, a few
differences can be pointed out.

Manifests Every streaming session begins with the download of a manifest. In MSS,
the manifest is an XML file. In HDS, the manifest is called the Adobe Media Manifest,
or F4M. In HLS, manifests are text files called M3U8. The master M3U8 file contains
global information about the media, and pointers to other M3U8 playlists. These playlists
include the name and duration of every segment for each quality.

Video containers and codecs Some proprietary systems are limited by specific video
containers. For example, segments in HDS should be in put into F4V containers. Until
recently, HLS clients were consuming MPEG-TS segments. Nowadays, HLS can be used
with fragmented MP4. Moreover, unlike DASH which is codec-agnostic and only limited
by the external decoders available, proprietary systems may be codec-specific for both
video and audio content. As an example, MSS, HDS and HLS are not compatible with
the open-source codecs VP8 and VP9.

Proprietary implementations The official implementations from the technology
owners may be the only solution to watch content if the standard is not compliant enough
for open source or concurrent projects to emerge. In the early years, both HDS and MSS
were restricted to the proprietary solution. Nowadays, HLS implementation in iOS cannot
be modified and it is not possible for a developer to use his own implementation. Because
of this limitation, proprietary HAS solutions may be constrained by the non-optimal
adaptive mechanisms carried by the official implementations.

HAS limitations

The work of Adhikari et al. [AGH+12] advocates that QoE would greatly benefit from
the venue of a practical HAS that can actually utilize multiple servers simultaneously.
Even though there are some propositions for multiple servers streaming [ZLL15, PZC11],
none of the existing approaches provide a high QoE through both redundancy between
independent sub-segments (to avoid rebufferings) and bandwidth aggregation (to reach a
higher visual quality).

Simon Da Silva — Univ. Bordeaux, LaBRI 14 High-QoE Privacy-Preserving Video Streaming

CHAPTER 2. BACKGROUND 2.2. ADAPTIVE STREAMING

2.2.3 Multiple-source streaming

DASH is very efficient for serving videos from well-provisioned servers in the cloud.
However, for edge-assisted video delivery from peers with less stable or reliable links,
fetching from multiple sources with some level of redundancy is a strong asset.

MS-Stream
Content
servers

MS-Stream
Clients

Content
Delivery

Figure 2.3: MS-Stream illustration

Multiple-Source Adaptive Streaming over HTTP

Multiple-Source Adaptive Streaming over HTTP (MS-Stream) [BQLN17a, BQLN+18,
BQLN+17b, BQLN+17c] is a proposition that extends the DASH standard, wherein a
client can simultaneously utilize multiple servers in order to aggregate bandwidth over
multiple links while being resilient to network and server impairments (see Figure 2.3).
It reconstructs segments of the highest-possible bitrate supported by its download link,
even when none of the sources is able to individually provide this quality. It ensures

Simon Da Silva — Univ. Bordeaux, LaBRI 15 High-QoE Privacy-Preserving Video Streaming

CHAPTER 2. BACKGROUND 2.2. ADAPTIVE STREAMING

availability through redundancy of video content with low-bitrate versions that can be
used as a backup and helps avoiding rebuffering events.

Sub-segments generation and composition

For each segment, a MS-Stream client assembles individual sub-segments requests,
using as many servers from the MPD as necessary to satisfy its target bitrate. Segments
and sub-segments are formed of short (e.g., 0.5 s) video frames sequences gathered into
independent units called GoPs. Each video server can serve a GoP in different bitrates, in
both a low-quality (LQ) and several high-quality (HQ) versions. A sub-segment assembles
GoPs, some in LQ and others in the HQ level requested by the client. This allows to
obtain a HQ version of each GoP from exactly one server, while also requesting this same
GoP in LQ from other servers as fallback.

MS-Stream
content
servers

Content
delivery

MS-Stream
clients

Sub-segment
requests

HQ

LQ
SQ

3 Mbps

2 Mbps

1 Mbps

6
Mbps

HQ
HQ

HQ
HQ

HQ
HQ

SQ
SQ

SQ
SQ

SQ
SQ

LQ
LQ

LQ
LQ

LQ
LQ

HQ
HQ
HQ

HQ HQ
HQ

Figure 2.4: Multi-source adaptive streaming with MS-Stream

Simon Da Silva — Univ. Bordeaux, LaBRI 16 High-QoE Privacy-Preserving Video Streaming

CHAPTER 2. BACKGROUND 2.2. ADAPTIVE STREAMING

Let us take Figure 2.4 as an example and assume that the video segment is formed of
6 GoPs. The client asks the first server, with a capacity of 3 Mbps, for GoPs 1, 2 and 3 in
HQ and GoPs 4, 5 and 6 in LQ. The client requests GoP 4 in HQ from the second server,
with a capacity of 1 Mbps, and GoPs 1, 2, 3, 5 and 6 in LQ. Similarly, the third server
sends GoPs 5 and 6 in HQ, and GoPs 1, 2, 3 and 4 in LQ. The client finally assembles a
video segment with the highest received bitrate for each GoP and displays up to 6 Mbps.

Overhead

GOP	
GOP	

GOP	
GOP	GOP	

GOP	

Sub-segment 1 Sub-segment 2

GOP	GOP	
GOP	
GOP	
GOP	

GOP	

GOP	
#1	GOP	
GOP	

GOP	
GOP	

GOP	

Sub-segment 3

High bitrate GOP GOP	
Redundant
bitrate GOP GOP	 Null bitrate GOP GOP	

Sub-segment	
composer	at	
MS-Stream	
server	

Content qualities available at
MS-Stream server

Time Time

Example of possible sub-segments

GOP	
#1	GOP	

GOP	
GOP	
GOP	
GOP	

GOP	
#1	GOP	

GOP	
GOP	
GOP	
GOP	...

Figure 2.5: MS-Stream sub-segment generation and composition

In MS-Stream, the client uses the redundant GoPs in LQ as fallbacks if segments in
HQ are not received on time. The bandwidth overhead directly depends on the bitrates
and configuration used. Indeed, the MS-Stream client may be tuned to minimize the
bandwidth consumption overhead resulting from GoPs redundancy by not requesting some
of the LQ GoPs, as shown in Figure 2.5, sub-segment 3. This effectively results in a lower
overhead. Results show less than 10% average increase of bandwidth usage in common
usage of MS-Stream [BQLN+17c]. Besides, it ought to be noted that the generation
and aggregation of sub-segments have very low processing footprints [BQLN+17c] as
they only require an assembling function of already encoded GoPs available at different
bitrates.

Simon Da Silva — Univ. Bordeaux, LaBRI 17 High-QoE Privacy-Preserving Video Streaming

Summary

Nowadays, according to the DASH standard (and similar HAS techniques), video
content is simultaneously encoded in various qualities, and clients request the most
suitable quality according to network conditions.
MS-Stream is a multiple-source streaming solution that extends the DASH standard.
MS-Stream clients can aggregate bandwidth from multiple servers to increase video
quality and drastically reduce rebufferings, thanks to slight redundancy with low network
overhead cost.
However, users can still experience server-side failures, congestion, or unavailability.
Moreover, providers who statically over-provision their platform to mitigate these issues
face a higher cost. Besides, browsing on video streaming platforms generates an access
history of watched content, which can be leveraged for the benefit of the user (e.g.,
allowing personalized recommendations for new videos), or for the benefit of the platform
(e.g., targeted advertising). Therefore, adaptive streaming still lacks a system providing
both a high QoE and privacy protection to users while minimizing the underlying
infrastructure cost.

Simon Da Silva — Univ. Bordeaux, LaBRI 18 High-QoE Privacy-Preserving Video Streaming

Chapter 3

Related work

Outside of a dog, a book is man’s best friend. Inside of a dog it’s
too dark to read.

— Groucho Marx

Video streaming is a trending topic both in research and in the industry, as consumers
demand is continuously growing. This thesis aims at proposing a practical privacy-
preserving video streaming system, providing both a high Quality of Experience and
strong privacy guarantees to its users, without quality or performance degradation, at
the lowest monetary cost. To achieve this goal, we propose three main contributions :

• Muslin is a dynamic server provisioning and advertising system which both increases
QoE (with multiple-source streaming) and decreases costs (due to real-time delivery
conditions monitoring).

• PrivaTube is a video streaming system intending to provide strong privacy
guarantees (through the use of encryption and fake requests in Intel SGX enclaves
to obfuscate access patterns), with unaltered QoE (thanks to edge-assistance and
proactive pre-fetching using popularity-based caching policies).

• PProx complements video streaming systems by providing pseudonymous and
private recommendations (being encrypted and shuffled in Intel SGX enclaves) with
unaltered accuracy and high performance.

Therefore, in this chapter, we review related work in streaming platforms architectures,
techniques for privacy-preserving streaming, and privacy-preserving recommender systems
to complement video streaming solutions, which led to Muslin, PrivaTube and PProx.

Simon Da Silva — Univ. Bordeaux, LaBRI 19 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.1. VIDEO STREAMING

3.1 Video streaming

Streaming platforms can target either live streaming (i.e., the broadcast of a single
stream, as it is generated) or VoD streaming. Then, to deliver content, these platforms
can either rely on Peer-to-Peer (P2P) and/or hybrid (edge-assisted) delivery, meaning
that end-users can retrieve content from other clients, or on CDN networks where content
is exclusively delivered from video servers.

3.1.1 Edge-assisted and Peer-to-Peer streaming platforms

Live streaming does not require maintaining a cache for a collection of videos, making it
adapted to decentralized streaming [LGL08]. Exchange of video segments may happen
between peers over an unstructured network using gossip-style interactions, as in Cool-
Streaming [XLKZ07], or use dissemination structures built over an overlay network, as in
MDC [PWC03] or SplitStream [CDK+03]. Pure non-hybrid Peer-to-Peer live streaming
is highly scalable, but it is difficult in practice to guarantee high QoE due to uncertainties
in peer availability and network stability.

Supporting the VoD model requires being able to quickly discover a specific video in a
catalog and to ensure that copies of each video exist in the system at all times, making it
less amenable to a fully decentralized implementation. Instead, several authors proposed
to complement a limited set of servers with edge peer resources as we do in Priva-
Tube. Push-to-Peer [SDK+07] targets a deployment on controlled networks, including
for instance set-top-boxes deployed by an ISP. Push-to-Peer proactively pushes content
to edge nodes to increase availability and QoE, based on a utility model [TM12]. This is
similar to the use of fake requests in PrivaTube but Push-to-Peer does not consider
privacy aspects. P2VoD [DHT04] combines source servers with the use of multicast
trees [PWC03, CDK+03]. Video content is cached at clients who can join the trees and
act as providers. BASS [DLHC05] is a similar approach using the BitTorrent protocol.
Both P2VoD and BASS are only evaluated using simulations, and the ability of the P2P
network to provide high QoE remains limited. The approach proposed by Zhang, Wang,
et al. [ZWCR09] is dual: A set of helper servers are used to complement a P2P VoD
system when QoE or scaling cannot be guaranteed.

PrivaTube adopts an edge-assisted architecture where the discovery of sources,
including those at the edge, benefits from centralization. This pragmatic approach is
in the interest of QoE, and eases the compatibility with the MPEG-DASH industry
standard. A similar approach is used in Xunlei Kankan [ZLHC14] and LiveSky [YLZ+09].

Simon Da Silva — Univ. Bordeaux, LaBRI 20 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.1. VIDEO STREAMING

Both systems combine CDNs with edge resources and report serving tens of millions of
users simultaneously.

PeerTube [Peeb] is an open social network for video sharing. PeerTube is decen-
tralized and uses a collection of support sites, leveraging W3C’s federation protocol
ActivityPub [W3C], but the download of videos is made using a single server.

3.1.2 WebRTC

WebRTC (Web Real-Time Communication) [Web], is an standardized API (by W3C and
IETF) to communicate from one browser to another. The project started in 2011 and
the API has been implemented in major browsers from 2013 to 2015. This technology
have been a game changer for browser-based P2P use cases. The goal of WebRTC is
to provide ultra-low latency UDP sessions in order to support real-time scenarios, such
as video conferencing or multiplayer gaming between users. It embeds security and
NAT-traversal functionalities. Its API is composed of three main parts: User Media,
RTCPeerConnection and Data Channels.

User Media The User Media API offers tools to detect, select and use media equipment
like cameras and microphones. With these functions, clients are able to create media
streams from a webcam and send them to other peers. The media can be modified lively,
which allows for instance to switch cameras of a cell phone. The packets produced by the
stream can be caught in order to save the video or transfer data to an external server
using any protocol.

RTCPeerConnection These functions aim to establish a connection between two
peers. It enables providing servers for NAT-traversal capabilities, defining if a connection
should be reliable, and if the packets should arrive in order. Then, a Session Description
Protocol (SDP) string is created, containing information to create a link between peers.
The SDP should be sent to the corresponding peer. A bidirectional websocket-based
signaling server is usually leveraged to ease the initialization process. Once the SDP is sent,
the browser begins the Interactive Connectivity Establishment (ICE) mechanism with
the help of the STUN and TURN servers provided in the options. If a direct connection
can be established with the help of a STUN server, this solution is prioritized. However,
if the NAT can not allow such a link, a relay TURN server is selected to establish the
session. Once the peer connection is ready, it becomes possible to send the media stream
created with the User Media API to begin a simple ultra low latency video conference.

Simon Da Silva — Univ. Bordeaux, LaBRI 21 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.1. VIDEO STREAMING

Data Channels Once a RTC connection is established, a data channel can be created
(if both peers support data transmission). Raw data can be sent from one peer to another
over UDP channels. This feature brings a lot of flexibility because any kind of information
can be transferred. It may be used to transfer custom control flow, specific text messages,
or even video segments. Because of these data channels, adding P2P capabilities to
existing JavaScript DASH players has become possible. Instead of using a standard
HTTP request to get a segment from a server, a custom query can be sent to another
peer through a reliable channel. Proprietary solutions from Peer5 [Peea], Streamroot [Str]
or Hive Streaming [Hiv] are using WebRTC data channels in their players. Similarly, the
open source library P2P Media Loader [P2P] provides P2P capabilities on top of HAS
video players thanks to WebRTC. The API also draws researchers attention to improve
DASH segments delivery [ZLM16].

3.1.3 CDN-based streaming platforms architectures

In both live and VoD streaming, servers provisioning, video content replication and
servers advertising are the key problematics for CDN operators. Most commercial CDN
operators thus keep their policies secret [Pas12], as they often have a strong impact
on cost and end-users’ QoE. The usual paradigm is to estimate the audience for an
event, and to provision enough servers near end-users to withstand the demand [Pas12].
Optimizing content replication is a difficult task. Replicating content to minimize the
network distance for requesting clients is NP-complete [KRR02]. Therefore, advanced
content caching algorithms are mostly heuristics. Then, when clients request video content,
the CDN operators strategy is to route their requests to the nearest server thanks to
DNS [NSS10] or IP anycast [FMM+15], and use HAS protocols for delivery. This behavior
minimizes network-induced latency, and lowers the probability to encounter congestion.

Content replication policies

The most widespread content caching and replication techniques are based on greedy
heuristic algorithms. It is usually done by maximizing a utility function [LOH16] or
minimizing a cost function [SG16, LBSR14]. Other policies consider social relationships
between users and forecast the trending videos [HWC+15]. Our work in Muslin is also
based on a greedy iterative algorithm, however it differs from these propositions. Live
content is only stored for a short time and requires fast computation and decision, as
opposed to on-demand streaming where caching policies can converge over time. In Priva-
Tube, caching (pre-fetching) policies are probabilistic and take into account content

Simon Da Silva — Univ. Bordeaux, LaBRI 22 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.2. PRIVACY-PRESERVING STREAMING

popularity over a long period, which is only possible in the VoD model. PrivaTube does
not aim at forecasting future audience, or targeting specific locations.

Besides, some works use network awareness [BBC12] and QoS metrics to route requests
or to select servers. Zheng et al. [ZT15] base their approach on path latency optimization
through multiple servers, but not bandwidth or system scale. Similarly, Puntheeranurak
et al. [PSn15] only take into account latency, delay and jitter inside the network. As
opposed to these approaches, Muslin aims at reaching a high end-user QoE, and takes
into account not only network measurements but also live clients feedbacks to provision
servers.

Servers selection for a high and fairly shared QoE

Adhikari et al. [AGH+12] introduced the DASH framework of Netflix, the largest DASH
provider worldwide, and outlined that a user is always bound to one server, regardless of
network issues. Consequently, one major drawback is that servers can get overloaded,
and thus some clients may receive a poor QoE or might even not have access to the
content at all. Muslin takes into account not only the distance, but also the server
bandwidth and requests failure (timeout) rate, enabling to provide a better QoE to the
users. PrivaTube similarly computes latency, bandwidth and timeouts for each client to
select Candidate Assisting Peers (CAPs) to fetch content from.

Besides, there have been some attempts to reach a better QoE fairness between
HAS clients. Georgopoulos et al. [GEB+13] use Software Defined Networks to allocate
bandwidth to each link, and Petrangeli et al. [PFC+15] adapt the video bitrate requested
by clients. However, to the best of our knowledge, all approaches towards higher QoE
fairness are single-source oriented, unlike Muslin and PrivaTube, and do not consider
dynamically advertising servers to the clients as Muslin does.

3.2 Privacy-preserving streaming

As efficient video streaming over the Internet itself emerged recently, very few proposals
were made to preserve users’ privacy when using streaming platforms and solutions.

Popcorn [GCM+16] uses Private Information Retrieval (PIR) techniques to conceal
the access to videos by clients of a VoD streaming platform. The platform only keeps
encrypted video content, and PIR hides the actual interest in a video by forming requests
that combine data from the entire catalog. The cost of PIR is related to the size of

Simon Da Silva — Univ. Bordeaux, LaBRI 23 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.2. PRIVACY-PRESERVING STREAMING

the catalog. However, Popcorn has a weaker adversarial model than PrivaTube and
PProx as it requires non-colluding servers. Additionally, the overhead of the cryptographic
mechanisms it uses makes it unpractical for large scale deployments (e.g., a distributed
catalog of thousands of movies). Instead, the elastic architecture of PrivaTube and
PProx, and the use of lightweight cryptographic mechanisms make them scalable by
design.

Rajan et al. [RVN+16] leverage a privacy-preserving publish and subscribe [OFMR16]
communication system to hide the interests of clients from video providers, under the live
streaming model. As with the use of onion networks (e.g., in Tor [DMS04]) this approach
requires cryptographic operations at intermediary nodes, which incurs latencies and costs
likely to degrade QoE significantly.

Cui et al. [CAR17] consider the more general problem of hiding access patterns to
objects in a third-party CDN, and present encryption mechanisms under the Searchable
Encryption (SE) model. This allows users to search and request items without revealing
their interests in the clear. These mechanisms do not protect, however, from an attacker
who would analyze the traffic to and from the clients. In contrast, PrivaTube and PProx

do not require a specific and costly content encryption on servers.

3.2.1 Unlinkability-based solutions

Previous approaches have proposed to add noise to legitimate traffic in order to conceal
the interests of users, as fake requests allow in PrivaTube.

Decouchant et al. [DBYEV19] developed concurrently to our work a technique similar
to our use of fake requests, but for pure P2P video streaming, i.e., without any video
servers. Peers subscribe to k − 1 additional streams for each stream of interest, and
participate in the dissemination of all k streams. Similarly to fake requests in PrivaTube,
these additional participants increase the availability of videos. P3LS enables, however,
peers to participate with less bandwidth to the dissemination of additional streams (up
to 30% according to simulations), provided that an attacker is not able to determine with
sufficient confidence a participation to the dissemination of a stream of interest from the
dissemination of another stream. This property of plausible deniability [BSG17] could
also benefit PrivaTube.

Other approaches target other applications such as P2P file sharing. For instance,
Swarmscreen [CDM+09] adds random connections in the BitTorrent file-sharing network
to enforce plausible deniability. A noise level of 25% to 50% prevents an attacker from

Simon Da Silva — Univ. Bordeaux, LaBRI 24 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.2. PRIVACY-PRESERVING STREAMING

successfully mapping communities of interests in this network, and similarly as in Priva-
Tube, improves overall content availability. However, Swarmscreen fake connections do
not prevent an attacker from actively probing individual nodes for content and are not
leveraged to improve content availability.

Mistrustful P2P [dSDR16] leverages erasure codes to reduce the cost of fake requests
in a P2P file-sharing system and, as for PrivaTube, improve content availability while
concealing users’ interests.

3.2.2 Designing privacy-preserving systems using Intel SGX

Trusted Execution Environments (TEEs) offer guarantees of isolation, confidentiality,
and integrity of data and computations performed in untrusted machines by leveraging
custom microprocessor zones. PrivaTube and PProx rely on Intel Software Guard
Extensions (SGX) [CD16a], which defines the concept of enclave as an isolated unit
of data and code execution that cannot be accessed even by privileged code (e.g., the
operating system or hypervisor). Enclaves can be attested, meaning it is possible to
prove that the code running in the enclave is the one intended, and that it is running on
a genuine Intel SGX platform. Local attestations allow enclaves running on the same
processor to prove each other as genuine, and remote attestations allow enclaves to prove
their authenticity to third parties by making use of a remote attestation service provided
by the manufacturer. Once attested, enclaves can be provisioned with secret data by
using authenticated secure channels. Moreover, enclaves can persist secret data outside
the trusted zone by using a sealing mechanism.

Trusted Execution Environments (TEEs) and in particular Intel SGX have been
extensively used in the past few years to build secure and privacy-preserving systems. Ex-
amples include replication services [BWG+16], Web search proxies [MBF+17a, PGM+18]
or database systems [SCF+15, PVC18]. This demonstrates that TEEs represent a promis-
ing technology as they offer a satisfactory compromise between security properties and
performance overheads. While PrivaTube and PProx principles are not exclusively
relying on Intel SGX properties, it still illustrates the benefits of this technology for
performance-sensitive applications (such as video streaming).

Simon Da Silva — Univ. Bordeaux, LaBRI 25 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.3. RECOMMENDER SYSTEMS

managed instances of
recommendation systems

Recommendation-as-a-Service

application

website

access
items

access
articles

insert feedback
and receive

recommendations

Figure 3.1: Principle of Recommendation-as-a-Service

3.3 Recommender systems

All major video streaming services include a recommendation functionality. They rely on
these recommendations to retain users on their website or application. Indeed, recom-
mender systems [BOHG13] complement traditional navigation on websites and applica-
tions. They enable personalized services [GFD+14], improve the user experience [GDBJ10],
and eventually increase service providers’ revenue [FH07]. Recommendations can be new
directions, items, or media. These are computed based on users’ past interactions and
explicit or implicit feedback (e.g., item likes, dislikes, navigation clicks) combined with
the interactions of other users with similar interests. Recommendations are used by major
Web services (e.g., Google News, Amazon, Netflix) but can also benefit smaller players
(e.g., discussion forums or online stores).

3.3.1 Recommendation-as-a-Service

Configuring and operating an efficient and scalable recommendation service is far from
trivial. Several companies thus offer Recommendation-as-a-Service (RaaS). Examples in-
clude Darwin & Goliath [BGO19], Mediego [Med19], Plista [Pli19b], or Recombee [Pli19a].
In the RaaS service model, illustrated in Figure 3.1, application providers delegate the
collection of interaction information (feedback) from their users, the construction of
models based on this feedback, and the generation of personalized item recommendations
from their catalog.

Simon Da Silva — Univ. Bordeaux, LaBRI 26 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.3. RECOMMENDER SYSTEMS

3.3.2 Privacy issues for Recommendation-as-a-Service

The major downside of using recommendation systems is the impact on users’ privacy.
Computing recommendation requires, indeed, the collection of massive amounts of
sensitive data, which raises legitimate concerns amongst users [VZ19]. Access histories
and feedbacks may reveal personal traits or interests, e.g., based on access to different
topics in an online forum or specific movies in a review platform. An adversary observing
interactions with the recommender system or accessing its database may succeed in
profiling users and determining private information such as their faith, sexual preferences,
or health condition [CKN+11].

Privacy risks of recommender systems can be, unfortunately, amplified by the use
of RaaS. Applications now have to trust a third-party and its infrastructure, typically
running in a public cloud, for receiving and storing sensitive data from their users.

3.3.3 Privacy-preserving Recommendation-as-a-Service

The research community proposed various solutions to deal with the privacy concerns
of recommender systems. These solutions can be classified in three categories: (i) those
based on cryptography [WTAR19, GKP+17] where computations are performed over
fully-encrypted data; (ii) differentially private solutions [MM09, SKSX18, SJ14] that add
noise for disallowing the re-identification of a specific user and their data and (iii) Peer-
to-Peer solutions [BFG+16, DTS+19, CA07, CC02, SPTH09] where users keep their
preferences locally and compute in a decentralized manner their similarity with other
users based on commonly accessed items. These solutions present drawbacks such as
performance issues for cryptography-based solutions or accuracy issues for differentially
private solutions (due to the addition of noise) and P2P solutions (due to the partial
knowledge users have on the overall system). Perhaps more importantly, none is well
adapted to the RaaS service model, and that for two key reasons:

• They all target a specific type of recommendation algorithm (e.g., using ma-
trix factorization [SKSX18, DTS+19] or collaborative filtering [CC02, SPTH09]).
This goes against the need for RaaS providers to support a variety of such algo-
rithms [Bur02, BOHG13];

• They require to install complex code and to maintain specific or even sensitive
information at the user-side, at odds with the “turn-key” service model of RaaS.
Solutions based on encrypted processing [GKP+17, WTAR19] require to provision

Simon Da Silva — Univ. Bordeaux, LaBRI 27 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.3. RECOMMENDER SYSTEMS

secret keys to the user side with the associated risks of leakage and the additional
complexity of large-scale private key management. Differentially private solutions
implemented at the client side [SJ14, MM09] require to provide clients with models
of the data domain to enable adaptive noise addition.

Privacy violations related to recommendation received considerable attention in
research [BOHG13, FKV+15]. Representative risks are the inference of individual users’
profiles from temporal changes in the public outputs of a recommender system [CKN+11],
or statistical de-anonymization attacks [NS08]. Surveyed users generally consider that
recommendation systems violate their privacy [MDMÖG18] and would prefer not to be
profiled [AK06].

Privacy preservation can involve cryptographic schemes such as homomorphic en-
cryption to compute recommendations over encrypted user preferences, e.g., using X-
Rec [GKP+17] or CryptoRec [WTAR19]. These solutions have a high computational
overhead, leading to high latencies in collecting recommendations. Slope One predic-
tors [BVKD11] evaluations using support for homomorphic computations of the Paillier
cryptosystem [Pai99] report, indeed, latencies in the order of several seconds in public
clouds [BVK+12, BVKD13], similarly as for CryptoRec [WTAR19]. PProx only imposes
a limited latency on top of the base performance of an unmodified recommender system.

Differential privacy limits the disclosure of private information of records in the result
of aggregate queries in a statistical database [Dwo08]. In the context of recommender
systems, differential privacy can be used to add noise and obfuscate user preferences
in the LRS storage and replies [MM09, SJ14, SKSX18]. Such approaches come with a
difficult-to-set trade-off on the quality of recommendations. Under our fault model, the
noise should further be added before sending put requests to the cloud, requiring the
provision of user-side code with specific models. In contrast, PProx does not degrade the
quality of recommendations and enables easy deployment.

A final approach to privacy preservation is to distribute the computation. PDM-
FRec [DTS+19] enables decentralized matrix factorization, an operation at the heart
of many recommendation algorithms. Other approaches include the pre-aggregation of
several users’ profiles and the use aggregated profiles in the cloud [SPTH09], or P2P
approaches computing an overlay of nodes based on similar interests [BEK16]. Data
decentralization reduces risks of leaks in the cloud but increases such risks during direct
exchanges between users. These solutions have to rely on additional noise to protect
individual profiles, impacting the quality of recommendations, and their deployment is
far from trivial (e.g., considering NATs, firewalls, or the possibility of malware).

Simon Da Silva — Univ. Bordeaux, LaBRI 28 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.3. RECOMMENDER SYSTEMS

X-Search [MBF+17b] implements web search proxies in SGX to protect the link
between users and their search queries. While this presents similarities with user-interest
unlinkability, X-Search employs fake queries to obfuscate this information. Such an
approach would not be applicable to a recommender system as it would degrade the
quality of recommendations. SGX-Tor [KHH+18] leverages SGX to strengthen the security
of Tor. Fake requests in PrivaTube and shuffling in PProx present similarities with
onion routing in Tor, in that they help prevent an adversary observing network exchanges
from determining communication endpoints. Unlike PProx, and similarly to other work
employing SGX [KCG17, KPW+19], X-Search or SGX-Tor do not consider the possibility
for an adversary to steal secrets from an enclave.

State of the Art overview

To sum up this chapter, Table 3.1 provides the reader with an overview of streaming plat-
forms architectures, techniques for privacy-preserving streaming, and privacy-preserving
recommender systems.

Simon Da Silva — Univ. Bordeaux, LaBRI 29 High-QoE Privacy-Preserving Video Streaming

CHAPTER 3. RELATED WORK 3.3. RECOMMENDER SYSTEMS

Category Examples Comments Contribution

– Traditional streaming –

CDN+HAS

YouTube [You20] Clients are bound to
a single server, thus
prone to failures, con-
gestion or unavailabil-
ity, and therefore un-
fairness.

Muslin dynamically
provisions and adver-
tises content servers
to users, and simulta-
neously streams from
multiple sources.

Dailymotion [Dai20]
Twitch [Twi20]
Vimeo [Vim20]
Netflix [Net20]

Decentralized PeerTube [Peeb]

– Peer-to-Peer –

Full P2P
CoolStreaming [XLKZ07] P2P provides scalabil-

ity by essence but is un-
stable and unreliable.

Muslin & PrivaTube
ensure reliability with
proactive provisioning.

MDC [PWC03]
SplitStream [CDK+03]

– Edge-assisted –

WebRTC

Peer5 [Peea] Edge-assisted stream-
ing delivers a higher
QoE than pure P2P
streaming while remain-
ing scalable. However,
it still lacks privacy
preservation, as peers
and providers can ac-
cess sensitive data.

PrivaTube provides
strong privacy guaran-
tees through the use of
encryption and fake re-
quests in Intel SGX en-
claves, with unaltered
QoE thanks to edge-
assistance and multiple-
source streaming.

Streamroot [Str]
Hive Streaming [Hiv]
P2P Media Loader [P2P]

Classic

Push-to-Peer [SDK+07]
P2VoD [DHT04]
BASS [DLHC05]
Xunlei Kankan [ZLHC14]
LiveSky [YLZ+09]

– Privacy-preserving streaming –

General Popcorn [GCM+16] High latency overhead
and scalability issues.

PrivaTube scales well
without altering QoE.Tor [DMS04]

Unlinkability
P3LS [DBYEV19] These techniques have

important bandwidth
and storage overheads.

PrivaTube further
leverages fake requests
for proactive caching.

Swarmscreen [CDM+09]
Mistrustful P2P [dSDR16]

– Privacy-preserving recommenders –

Cryptography X-Rec [GKP+17] Extremely slow, often
several seconds latency.

PProx provides sub-
second latencies.CryptoRec [WTAR19]

Differential [MM09, SJ14, SKSX18] Quite inaccurate, and
impractical due to com-
plex client-side code.

PProx preserves accu-
racy with minimal de-
ployment requirements.Decentralized PDMFRec [DTS+19]

Table 3.1: State of the Art digest

Simon Da Silva — Univ. Bordeaux, LaBRI 30 High-QoE Privacy-Preserving Video Streaming

Summary

Current video streaming solutions usually rely on CDN servers and HAS techniques
to deliver content. However, the client is often bound to a single server, thus prone to
failures, congestion or unavailability, and therefore unfairness between users. Besides,
providers who statically over-provision their platform to mitigate these issues face a
higher cost. To overcome these challenges, Muslin dynamically provisions and advertises
content servers to users and simultaneously streams from multiple sources.
An alternative to CDN servers is P2P streaming, which provides better scalability by
essence, but is unstable and unreliable. Thanks to enabling solutions such as WebRTC,
hybrid edge-assisted streaming is currently growing. It delivers a higher QoE than P2P
streaming, in a scalable fashion, such as in PrivaTube. However, it still lacks privacy
preservation, as peers and providers can access sensitive data.
Very few privacy-preserving video streaming systems exist. Most of them rely on heavy
cryptographic mechanisms over multiple nodes, adding a performance and latency
overhead, effectively reducing QoE. Unlinkability-based techniques (i.e., fake requests)
are efficient but come at the cost of bandwidth and storage overheads. Therefore,
PrivaTube relies on fake requests, but also leverages them for pre-fetching and caching,
thus reducing their cost. Besides, the use of Intel SGX enclaves enables strong security
properties with great performance (e.g., encryption mechanisms in PrivaTube and
PProx).
Recommender systems usually complement streaming solutions to retain users on their
website or application. Yet, they pose a serious threat to privacy, as user profiles
are established based on the watching history. A few privacy-preserving recommender
systems exist. They can be either cryptography-based, usually very slow (several seconds
latency); differentially private with added noise, thus inaccurate; or P2P-based and
decentralized, often slow, less accurate and unreliable. Besides, all of them use specific
recommendation algorithms, and require to install a heavy code layer at the client
side. To tackle these issues, PProx combines a several-layer encryption mechanism
with obfuscation (through shuffling) inside high-performance Intel SGX-enabled HTTP
proxies.

Simon Da Silva — Univ. Bordeaux, LaBRI 31 High-QoE Privacy-Preserving Video Streaming

Chapter 4

Muslin: High-QoE cost-efficient
multi-source streaming

The way to get started is to quit talking and begin doing.

— Walt Disney

Streaming services usually rely on large-scale CDN infrastructures to host video
content, and on HAS solutions (such as the DASH standard) to deliver it. When
accessing a video stream, consuming clients are automatically re-directed to the closest
server to temper network congestion and achieve higher throughput. However, if a large
amount of end-users located under the same geographic area is simultaneously consuming
the same streamed content, the nearest server can rapidly become overloaded.

This chapter introduces Muslin [DSBQL+19, DSBQL+18a, DSBQL+18b], a solution
supporting a high, fairly shared end-users QoE for live video streaming services over the
Internet.

4.1 Introduction

Current video streaming solutions usually rely on CDN servers and HAS techniques
to deliver content. However, the client is often bound to a single server, thus prone to
failures, congestion or unavailability, and therefore unfairness between users. Besides,
providers who statically over-provision their platform to mitigate these issues face a
higher cost.

Simon Da Silva — Univ. Bordeaux, LaBRI 33 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.1. INTRODUCTION

Provisioning

Forecast

Server
advertising

MUSLIN
server

Content
delivery

MUSLIN
content
servers

MUSLIN
clients

Feedbacks

Provisioning
module

Selection
module

Figure 4.1: Muslin overview

To overcome these challenges, Muslin relies on periodic feedbacks from Muslin clients
during streaming sessions and on a ranking score for servers provisioning and advertising.
As shown on Figure 4.1, the Muslin server provisioning module periodically estimates
the required throughput to dynamically adjust the infrastructure scale according to
real-world needs. The Muslin server selection module then advertises relevant content
servers to clients depending on multiple criteria such as distance, bandwidth and server
load. For content delivery, Muslin leverages MS-Stream, a multiple-source streaming
solution based on the DASH standard, in which a client can simultaneously use several
servers to aggregate throughput from multiple channels and to offer a higher QoE for its
users (see Section 2.2.3).

The rest of this chapter is organized as follows. Section 4.2 describes the Muslin

solution and introduces the provisioning and selection modules. We detail our experimental
setup in Section 4.3 and present our evaluation results in Section 4.4. Finally, Section 4.5
concludes.

Simon Da Silva — Univ. Bordeaux, LaBRI 34 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.2. MUSLIN: MULTI-SOURCE LIVE STREAMING

4.2 Muslin: Multi-Source Live Streaming

Muslin’s goal is to provide a high and fairly shared QoE for live video content delivery.
As QoE is subjective, it is a difficult challenge to evaluate the QoE of end-users. QoE
depends on many criteria, such as stalls, video resolution, encoding quality factor, bitrate
fluctuation over time, glitches, etc. The ITU-T recently provided automated methods
to algorithmically assess streaming QoE according to multiple factors in the P.1203
recommendation [IT17]. As it is complex and costly to take all parameters into account,
Muslin tackles the main reasons why end-users are not satisfied with their streaming
experience, which are the number of rebuffering events, the average video bitrate displayed,
and the number of quality changes during the session. Indeed, rebuffering events are
considered the main negative impact on perceived QoE [HSH+11], and both the average
video bitrate and the quality changes have a significantly higher influence on QoE in
adaptive streaming than other criteria [SES+14].

MUSLIN
server

X
content
server

closest server
but overloaded

content
server

content
server

High RSsc
Medium RSsc
Low RSsc

Legacy
CDN client

MUSLIN
client

Figure 4.2: If nearby content servers are overloaded, the Muslin server selects and
advertises other content servers with a higher Ranking Score RSsc to the client.

Muslin intends to solve the root causes for such QoE degradation, the two main
reasons being (1) the server load and (2) the low bandwidth between the server and the
client. Indeed, if a server is overloaded or if the network channel bandwidth to this server

Simon Da Silva — Univ. Bordeaux, LaBRI 35 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.2. MUSLIN: MULTI-SOURCE LIVE STREAMING

is low, clients requests to this server will timeout and cause rebufferings or visual quality
degradation (as shown on Figure 4.2). Therefore, Muslin is able to monitor current
delivery conditions to adapt its delivery schemes.

The Muslin system is composed of a Muslin server, MS-Stream clients, and MS-
Stream content delivery servers with an additional Muslin layer to handle feedbacks and
provisioning. Muslin clients send periodic feedbacks to the Muslin server, including the
observed bandwidth from each server, the video sub-segment requests failure (timeout)
rate, their average displayed video bitrate, the number of rebufferings they experience,
and the number of quality changes. Then, based on these feedbacks, the Muslin server
accordingly scales the underlying delivery platform to provide a higher QoE to end-users.

Fairness among users is mostly achieved thanks to the periodic feedbacks sent from
the clients. They aim at monitoring the QoS and QoE each user is provided with, and
improve server provisioning and selection accordingly. Server and Network Assisted
DASH (SAND)[DI18], introduced in MPEG-DASH Part 5, defines a standard for control
messages exchanged between the servers and clients to report metrics. Muslin feedback
messages are currently not compliant with SAND, as Muslin was developed prior to this
standard, but will be in a future version for better interoperability. Besides, MS-Stream
allows to maximize server throughput and reduce competition between clients when CDN
servers resources are saturated, as each client depends on multiple servers and is not
bound to a specific one.

Muslin is specifically effective for live streaming where churn rate can be very high
and important audience fluctuations can happen within seconds. In a VoD use case,
clients’ buffers can be larger and there is less pressure to react in real-time.

As illustrated in Figure 4.3, (1) the Muslin server dynamically provisions content
servers and replicates content to available MS-Stream content delivery servers, which
then register themselves to the selection module; (2) when a client requests a MPD file,
the selection module replies with a list of available servers; (3) the client can access live
content and begin the streaming session with the MS-Stream protocol; (4) Muslin

clients send periodic feedbacks. In this section, we present in details the Muslin system
and the Muslin server two main components, the provisioning module and the selection
module.

Simon Da Silva — Univ. Bordeaux, LaBRI 36 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.2. MUSLIN: MULTI-SOURCE LIVE STREAMING

SourceProvisioning

Selection
Muslin

MS-Stream
Client

Muslin
MS-Stream
Server

MUSLIN SERVER Control
Data

1

2 3

4

1

CONTENT
SERVERS

Muslin
MS-Stream
Server

Figure 4.3: Muslin system architecture overview

4.2.1 Provisioning module

The provisioning module goal is to decide on the number of servers to provision not only
to answer end-users throughput demand in video contents, but also to maximize their
QoE and minimize the required infrastructure scale. To do so, it periodically estimates
the required throughput to fulfill the demand based on actual feedbacks, and provisions
a subset of servers to host the content. The provisioning module period T is equal to the
length of two segments (typically 10 seconds).

Audience forecast

In order to estimate the demand, Muslin computes the future number of clients during
each period T . The current audience is defined as vt. The estimated audience at the next
iteration (t+ T) is labeled v̂t+T . Finally, ∆v represents the change in number of viewers,
that is to say ∆v = vt − vt−T . Muslin estimates the audience with the following formula:

v̂t+T = vt + ∆v (4.1)

As the actual replication is mostly based on clients feedbacks, a more accurate
estimation is not required.

Simon Da Silva — Univ. Bordeaux, LaBRI 37 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.2. MUSLIN: MULTI-SOURCE LIVE STREAMING

Throughput estimation

Muslin throughput estimation algorithm uses the demand forecast v̂t+T to estimate how
much throughput D the overall system must provide to the users. Each client tries to reach
a target quality (highest available video bitrate) Q. Due to MS-Stream specification,
the sub-segments redundancy adds a network bandwidth overhead percentage O (up
to a user-defined parameter). Besides, we introduce C, a dynamic corrective coefficient
to address the network and server issues. It takes into account the mean average video
bitrate B (B ≤ Q) displayed by all clients watching the stream, and the failure rate FR
which is the proportion of clients who failed to obtain in time the response of their last
request from the server.

C = Q

B
∗ (1 + FR) (4.2)

The dynamic coefficient C allows the system to scale according to current clients QoE.
It is then possible to compute the required system throughput that will be requested by
the clients, using the following formula:

D = C ∗ v̂t+T ∗ (Q+O) (4.3)

Provisioning decision

The provisioning module decides which servers to provision. To do so, the provisioning
module periodically computes a server Ranking Score RSs for each server s (includ-
ing offline servers), based on clients and servers proximity and on feedbacks gathered
periodically from all clients:

RSs = (Ns ∗ (1− FRs) ∗OBWs)
1
3 (4.4)

As shown in Equation 4.4, the RSs takes into account the number of nearby clients
Ns, the failure rate FRs, and the average observed bandwidth OBWs for each server s
by computing a geometric mean. The higher the score, the more likely the server to be
provisioned. For each server, the number of clients for which this would be the closest

Simon Da Silva — Univ. Bordeaux, LaBRI 38 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.2. MUSLIN: MULTI-SOURCE LIVE STREAMING

content server is computed as Ns. Muslin clients report when servers fail to deliver
a sub-segment in time. This measurement is aggregated into the failure rate FRs. It
represents the ratio of delivery failures detected over the total number of clients that
requested a sub-segment from this server during the last T seconds. Besides, all clients
can estimate the bandwidth from a specific server by observing delivered throughput in
past requests. Muslin can compute the average observed bandwidth estimate OBWs for
each server s.

First, the RSs of content servers is computed, and they are sorted by decreasing
order. If the target throughput D is greater than the current system maximum available
throughput, more servers are iteratively provisioned (by descending RSs order) until D
is reached. Else, if the system is over-provisioned, the servers are deprovisioned according
to their RSs in ascending order.

4.2.2 Selection module

The Muslin selection module goal is to advertise a subset of available content servers to
each client. To this end, we define a client-specific Ranking Score RSsc, in order to reach
a high and fairly shared QoE:

RSsc = ((Dmax −GDsc) ∗ (1− FRs) ∗OBWs)
1
3 (4.5)

To order the list of available content servers, the selection module computes the RSsc
for all server s and client c, based on feedbacks periodically sent by Muslin clients during
streaming sessions. Similarly to the provisioning score, the RSsc is based on the distance
between each client and server, and on clients feedbacks. As shown in Equation 4.5, the
client-specific ranking score includes the maximum distance between any two places on
Earth (Dmax kilometers, roughly 20000), the geographical distance GDsc using geoIP
data inferred from IP addresses, the video sub-segment delivery failure rate FRs of server
s (i.e., the percentage of requests the server was not able to handle on time), and the
average observed bandwidth OBWs between all clients and server s.

When clients request a video content, the selection module returns a MPD file
containing servers sorted by descending RSsc order. Then, Muslin clients decide how many
servers they use, based on MS-Stream adaptation strategies. As illustrated in Figure 4.4,
if nearby content servers are already overloaded, the Muslin server selects and advertises
other content servers with a higher RSsc to the client. It prevents content starvation from

Simon Da Silva — Univ. Bordeaux, LaBRI 39 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.2. MUSLIN: MULTI-SOURCE LIVE STREAMING

Server
advertising

MUSLIN
content
servers

MUSLIN
clients

MUSLIN
server
Provisioning

module

Selection
module

High RSsc

Medium RSsc

Low RSsc

Figure 4.4: Muslin RSsc-based servers selection example

clients, and allows fairness among users independently from their geographic position or
nearby servers.

4.2.3 Implementation and scalability discussion

The Muslin modules and Muslin content servers overlay are implemented in Java and
run inside light-weight Docker containers. Muslin content servers are built on top of
MS-Stream servers by adding the necessary glue code to manage the interaction with
the Muslin provisioning and selection modules. All interactions with the Muslin modules
fulfill the REST architecture style. Muslin clients are developed in pure JavaScript and
run within any mobile or desktop Web browser. Clients extend MS-Stream clients by
featuring periodic feedback reports to the Muslin server.

In terms of scalability issues, the Muslin system scales similarly to current HAS
solutions as MS-Stream is compliant with the DASH standard. A scalability downside
is due to the periodic clients’ feedbacks as the Muslin server workload grows linearly

Simon Da Silva — Univ. Bordeaux, LaBRI 40 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.3. EXPERIMENTAL SETUP

with the number of clients. To solve this issue, we implement on the client a feedback
request probability Pr to bound the number of feedbacks (see Equation 4.6).

Pr = min (1, N/vt) (4.6)

We thus ensure statistically that at most N clients will send a feedback for every
period T , depending on the current audience vt. With fewer feedbacks from the clients, the
average estimated bandwidth and failure rates for servers are still correct but refreshed
at a lower rate, resulting in temporary drops of QoE for some users.

Another scalability downside is due to the MPD refresh requests from Muslin clients
every few segments, or when they experience a poor QoE. Similarly to the clients feedbacks,
the Muslin server can become overloaded when too many clients request a new MPD
file. To solve this issue, the Muslin selection module is distributed across several network
nodes, each node only handling nearby clients requests (routed using classic DNS-based
schemes).

4.3 Experimental setup

In order to evaluate our approach, Muslin was deployed and compared with various
strategies that are commonly used. In the remainder of this section, we describe in details
each implemented strategy and then present the testbeds and the audience trace we use
for our experiments.

4.3.1 Provisioning, forecast, advertising and delivery policies

To evaluate Muslin, we implemented several common and alternative strategies as
summarized in Table 4.1.

Table 4.1: Provisioning, audience forecast, selection policies, and delivery protocols

Provisioning Forecast Selection Protocol

Muslin (Muslin) Muslin MS-Stream
Geographical Estimate CDN DASH
Random Oracle Random

Round robin

Simon Da Silva — Univ. Bordeaux, LaBRI 41 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.3. EXPERIMENTAL SETUP

Provisioning

Although CDN operators keep their strategies secret, the usual paradigm is to replicate
content near end-users and to balance the load across multiple servers. Therefore, we
implement two provisioning policies: geographical and random. The geographical policy is
aware of the clients locations and replicates the content to servers near locations with
the most clients. The random policy replicates content to randomly selected servers.

Audience forecast

Usually, CDN operators try to estimate the audience for an event, and then provision
enough servers near end-users in advance to withstand the demand. Therefore, we
implement an oracle forecast, which is aware of the exact amount of viewers and their
locations at any time. This policy is of course unreachable in real life, but it provides a
best-case current paradigm comparison. On the contrary, in the estimate strategy, the
audience is periodically estimated with the strategy depicted in Equation 4.1.

Selection policy

We implement three selection policies called CDN, Random and Round robin. The CDN
strategy is the most widespread one. It consists in routing clients to the nearest provisioned
servers. In the Random policy, servers in the MPD file are randomly selected and sorted.
The Round robin policy balances the load among available servers, as servers within the
MPD file are permuted for each new client request.

Content delivery

To deliver video content, we used the multi-source MS-Stream solution and the single-
source DASH standard.

4.3.2 Servers and clients setup

We evaluate our proposal in an actual environment. To do so, we set up 19 servers and
60 clients in our testbeds according to the US map (see Figure 4.5). We also chose an
actual audience trace to generate clients churn.

Simon Da Silva — Univ. Bordeaux, LaBRI 42 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.3. EXPERIMENTAL SETUP

Figure 4.5: US map with points of presence and clients

Table 4.2: Available servers for each setup

ID Location Upload (Mbps)
3 California, USA 200
3 Kansas, USA 200
3 New York, USA 200

16 16 states 30

testbeds

As shown in Table 4.2, we set up multiple Points of Presence (PoP) geographically
distributed in the US on a local network, by computing the latency and bandwidth
between each client and server according to the geographical distance. Those PoP are
setup according to two testbeds. In the first testbed, 200 Mbps servers are available in
3 strategic locations (West, center and East). In the second testbed, we use 30 Mbps
servers located in 16 US states. We chose 16 locations as most CDN providers have
between 10 and 30 PoP [CDN18], and Google provides 16 locations [Goo18].

Besides, we selected 21 client pools locations in the contiguous US states. We randomly
distributed the clients in the states using a weighted probability matching the state
population (e.g., California: 13%, Texas 10%, etc.) as shown in Figure 4.5, and saved the
output to re-use the same toss in all the experiments.

Simon Da Silva — Univ. Bordeaux, LaBRI 43 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.4. EVALUATION RESULTS

Audience trace

In order to be consistent for all experiments runs, we selected an audience trace and
replayed it every time by automatically connecting or removing video clients from the
broadcast, thanks to Docker containers.

Figure 4.6: AGDQ audience trace

The audience profile we chose (Figure 4.6) is a real trace from a week-long charitable
videogames event streamed online. The audience used is from July 08 2016 [Twi18],
as it contains many typical audience patterns, from 60 000 to 150 000 viewers over
30 hours. We scaled down the number of simultaneous clients to 60 (about 250 unique
sessions throughout each experiment) as our experimental infrastructure could not support
hundreds of thousands of connections. All clients are desktop with 30 seconds maximum
buffer and 8 Mbps download bandwidth.

Experiments

We perform our experiments using the Muslin system as described in Section 4.2 and
the policies explained above. Our experiments consist in a 30 minutes live streaming
broadcast, re-run 5 times to aggregate results and reduce noise and outliers impact in the
distributions. The used live video content is the Blender Big Buck Bunny video encoded
in five video bitrates (see Table 4.3).

4.4 Evaluation results

In this section we evaluate the delivery solutions and various policies in terms of cost,
QoE and fairness.

Simon Da Silva — Univ. Bordeaux, LaBRI 44 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.4. EVALUATION RESULTS

Table 4.3: Available video qualities

ID Bitrate (bps)
0 205.129
1 1.012.240
2 2.029.450
3 4.086.016
4 6.391.489

4.4.1 Delivery solutions

In this subsection we evaluate MS-Stream against single-source DASH streaming.
Figure 4.7 represents the number of rebufferings for each evaluated combination. The
X-axes represent experiment setups with IDs in the following form: provisioning + forecast
+ servers selection + testbed + protocol. For instance, geographical oracle replication with
random servers selection on testbed 16 with MS-Stream protocol has ID gor16m.

0

1

2

3

4

ge
g3

d
ge

g3
m

ge
m

3d
ge

m
3m

ge
r3

d
ge

r3
m

ge
rr

3d
ge

rr
3m

go
g3

d
go

g3
m

go
m

3d
go

m
3m

go
r3

d
go

r3
m

go
rr

3d
go

rr
3m

m
g3

d
m

g3
m

m
m

3d
m

m
3m

m
r3

d
m

r3
m

m
rr

3d
m

rr
3m

re
g3

d
re

g3
m

re
m

3d
re

m
3m

re
r3

d
re

r3
m

re
rr

3d
re

rr
3m

ro
g3

d
ro

g3
m

ro
m

3d
ro

m
3m

ro
r3

d
ro

r3
m

ro
rr

3d
ro

rr
3m

0

1

2

3

4

ge
g1

6d
ge

g1
6m

ge
m

16
d

ge
m

16
m

ge
r1

6d
ge

r1
6m

ge
rr

16
d

ge
rr

16
m

go
g1

6d
go

g1
6m

go
m

16
d

go
m

16
m

go
r1

6d
go

r1
6m

go
rr

16
d

go
rr

16
m

m
g1

6d
m

g1
6m

m
m

16
d

m
m

16
m

m
r1

6d
m

r1
6m

m
rr

16
d

m
rr

16
m

re
g1

6d
re

g1
6m

re
m

16
d

re
m

16
m

re
r1

6d
re

r1
6m

re
rr

16
d

re
rr

16
m

ro
g1

6d
ro

g1
6m

ro
m

16
d

ro
m

16
m

ro
r1

6d
ro

r1
6m

ro
rr

16
d

ro
rr

16
m

Figure 4.7: Number of rebufferings (per minute), 3 servers testbed (top), 16 servers
testbed (bottom)

The 3 servers testbed provides all clients with a rebuffering-free streaming session,
due to the high servers capacities and capabilities. In the 16-server testbed, the CDN
experiment performed with the DASH standard instead of MS-Stream results in half
the clients suffering at least one rebuffering in their streaming session. But when using
MS-Stream instead of DASH, all the clients have a continuous playback. More generally,

Simon Da Silva — Univ. Bordeaux, LaBRI 45 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.4. EVALUATION RESULTS

every MS-Stream setup outperforms its DASH equivalent in terms of rebufferings, as
most MS-Stream clients do not experience any rebuffering event at all.

In terms of bitrate, the results are quite similar between the two solutions in the 3
servers testbed. In the 16 servers testbed, MS-Stream provides a mean bitrate increase
up to 4 Mbps over DASH and lowers the number of quality changes for all setups.
Besides, the CDN setup with MS-Stream provides a more homogeneous distribution as
all clients reach a quality higher than 6.2 mbps in both testbeds. Oppositely, more than
a quarter of DASH clients display less than 6.0 mbps in the 16 servers testbed. Finally,
the gains and losses in the number of quality changes for the 3 servers testbed varies
with no distinguishable global trend. In the 16 servers testbed, all clients experience less
quality changes when using MS-Stream, with up to 4 less quality changes per minute.

All these results are explained as MS-Stream was mainly designed to increase the
end-user’s perceived QoE by avoiding rebufferings, providing a smoother playback and
simultaneously utilizing the available bandwidth from multiple paths with heterogeneous
characteristics, as previously mentioned [BQLN+17c]. The downside of these QoE im-
provements is a small CPU overhead, and the compulsory network bandwidth overhead
induced by the MS-Stream solution (evaluated in Section 4.4.5), which corresponds
to the percentage of data downloaded by the client but not used. Further details and
additional MS-Stream evaluations are available in former works [BQLN17a, BQLN+18,
BQLN+17b, BQLN+17c]. In the rest of this chapter, we only consider the MS-Stream
delivery solution, as it provides a greater QoE to the end-users for a small CPU and
bandwidth overhead.

4.4.2 Provisioning cost

Muslin aims at providing a high and fairly shared QoE through multi-source live stream-
ing, but it also aims at doing so while being cost-efficient when provisioning servers. To
compute provisioning cost, we assume a cloud computing service using server time billing.
Therefore, we sum the provisioned server time for each experiment run and compute
relative values.

As shown in Table 4.4, the total server time required is lower when using audience
estimates and dynamic server provisioning policies. Furthermore, as Muslin replication
policy also takes into account the actual quality displayed by the clients when dimensioning
the delivery system, it doesn’t over-provision if all clients can already obtain the target
video quality, and effectively lowers the number of servers provisioned when possible.

Simon Da Silva — Univ. Bordeaux, LaBRI 46 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.4. EVALUATION RESULTS

Table 4.4: Total relative cost (server time), 16 servers testbed

Provisioning Forecast Server time

Muslin (Muslin) 100
Geographical Estimate 109
Geographical Oracle 118
Random Estimate 109
Random Oracle 118

In the 3-server testbed, all policies have roughly the same cost.

Muslin replication is thus the least costly policy for the 16-server testbed, as it allows
more flexibility.

For better readability, we identify four relevant combinations, referred to as Muslin,
CDN, Random and Round robin in the text, detailed in Table 4.5. We chose the geographical
oracle provisioning and forecast combination because even though it is impossible to
reach in real-life, it provides a best-case current paradigm comparison with Muslin.
Likewise, we chose the CDN, Random and Round robin servers selection policies as they
are the three most widespread load balancing strategies. Furthermore, as explained in
Section 4.4.1, MS-Stream provides a greater QoE to the end-users than DASH, so we
chose to only consider the former delivery solution.

Table 4.5: Selected provisioning, forecast, selection, delivery policies, and testbed

Name Provisioning Forecast Selection Delivery Testbed

Muslin Muslin (Muslin) Muslin MS-Stream 16 servers
CDN Geographical Oracle CDN MS-Stream 16 servers
Random Geographical Oracle Random MS-Stream 16 servers
RR Geographical Oracle Round robin MS-Stream 16 servers

4.4.3 Quality of Experience

To evaluate the end-users QoE, three main metrics are considered: the number of
rebuffering events on Figure 4.7, the average video bitrate displayed on the user video
player (Figure 4.8) and the number of quality changes during the session (Figure 4.9).

Muslin clients were able to reach a higher QoE compared to most current setups, as we
demonstrate an increase of 100 kbps in median displayed bitrate, 2.5 less quality changes
per minute, and almost no rebufferings compared to a best-case CDN implementation.
The bitrate increase is due to the dynamic provisioning of content servers based on the

Simon Da Silva — Univ. Bordeaux, LaBRI 47 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.4. EVALUATION RESULTS

5.5

6.0

CDN MUSLIN Random RR

Figure 4.8: Displayed bitrate (Mbps), selected setups

0.0

2.0

4.0

6.0

CDN MUSLIN Random RR

Figure 4.9: Quality changes per minute, selected setups

actual clients demand. The quality changes and rebufferings decreases are a consequence
of RSsc-based servers selection, which prioritizes servers with available bandwidth and
high response rates.

4.4.4 QoE fairness

In this subsection, QoE fairness between clients is discussed. As shown above, Mus-

lin median QoE results are better than a best-case CDN implementation, and the
distributions are less spread than other setups, as the fairness among users is higher.

Table 4.6: QoE fairness (F index), selected setups

QoE metric CDN Muslin Random RR

Bitrate 0.7727 0.9610 0.5952 0.4685
Quality changes 0.4551 0.9485 0.5408 0.4660
Rebufferings 0.6952 0.9095 0.5179 0.6452

Indeed, as shown in Table 4.6, we registered an increase of 19.6% in bitrate fairness,
52% in quality changes fairness and 23.6% in rebufferings fairness, using the F index
(based on standard deviation, see Equation 4.7) described by T. Hoßfeld et al. [HSKHV16]:

Simon Da Silva — Univ. Bordeaux, LaBRI 48 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.4. EVALUATION RESULTS

F = 1− 2σ
H − L

(4.7)

The main reason for such increases is the feedback-based RSsc computation, enabling
to advertise the most suitable servers for each client, which are not necessarily the closest
ones. It also spreads the load evenly across all servers, and avoids starvation that may
happen for some clients in a traditional CDN scheme.

4.4.5 Network overhead

As stated in Section 2.2.3, MS-Stream can use some redundancy in sub-segments to
reduce the number of rebufferings in case of server or network impairment. Figure 4.10
shows the total network overhead percentage required by MS-Stream clients for a few
selected setups.

0.0

2.5

5.0

7.5

CDN MUSLIN Random RR

Figure 4.10: Network overhead (%), selected setups

MS-Stream manages to lower the required network overhead, as Muslin dynamically
provisions servers and advertises more suitable content servers to clients. Indeed, the
MS-Stream clients detects that most servers are able to reply in time to video segments
requests, and thus lowers the redundancy in sub-segments requests. On the contrary, when
servers are selected randomly, the network overhead required is higher as the delivery of
sub-segments is inconsistent.

4.4.6 Experiments summary and discussion

Muslin manages to increase QoE and fairness while lowering provisioning costs by
combining dynamic provisioning with feedback-based servers selection and multiple-
source content delivery. QoE and fairness increases compared to a best-case CDN setup

Simon Da Silva — Univ. Bordeaux, LaBRI 49 High-QoE Privacy-Preserving Video Streaming

CHAPTER 4. MUSLIN 4.5. CONCLUSION

are due to the servers selection taking server load and bandwidth into account and not
only distance (thanks to the RSsc ranking score). In our experiments, West coast and
California CDN servers are particularly stressed as they are close to large clients pools.
In a CDN setup, even if the audience is correctly estimated prior to the streaming session,
all clients will contact the nearest server and might top off the maximum capacity of
particular CDN servers in specific zones, thus reducing QoE and fairness.

4.5 Conclusion

Current video streaming solutions usually rely on CDN servers and HAS techniques
to deliver content. However, the client is often bound to a single server, thus prone to
failures, congestion or unavailability, and therefore unfairness between users. Besides,
providers who statically over-provision their platform to mitigate these issues face a
higher cost. To overcome these challenges, we presented our first contribution, Muslin,
a multi-source live streaming system which manages to reach higher QoE and fairness
than currently adopted streaming systems. Muslin takes into account clients’ real-time
feedbacks, dynamically replicates content and improves server advertising to enhance
users’ QoE and fairness, while minimizing the required infrastructure scale (i.e., cost).
We showed in our experiments that thanks to the coupling of MS-Stream with the
proposed Muslin system, end-users experienced almost no rebufferings, a higher video
bitrate, and more evenly shared QoE, compared to existing state-of-the-art streaming
systems setups.

To further reduce costs, an alternative to CDN servers is P2P and edge-assisted
streaming, which provides better scalability by essence. However, traditional P2P stream-
ing is unstable, unreliable, and lacks privacy preservation, as peers and providers can
access sensitive data. Our next step is thus to further improve scalability while provid-
ing strong privacy guarantees and unaltered QoE to end-users, thanks to edge-assisted
multiple-source streaming.

Simon Da Silva — Univ. Bordeaux, LaBRI 50 High-QoE Privacy-Preserving Video Streaming

Summary

Muslin uses dynamic server provisioning and advertising based on real-time delivery
conditions combined with MS-Stream to provide a better QoE at the lowest cost.
Compared to a best-case CDN setup, Muslin provides:
• +100 kbps video bitrate / +19.6% fairness

• -2.5 quality changes per minute / +52% fairness

• 0 rebufferings / +23.6% fairness

• -18% cost (as server time)

Simon Da Silva — Univ. Bordeaux, LaBRI 51 High-QoE Privacy-Preserving Video Streaming

Chapter 5

PrivaTube: Privacy-preserving
edge-assisted streaming

Arguing that you don’t care about the right to privacy because
you have nothing to hide is no different than saying you don’t
care about free speech because you have nothing to say.

— Edward Snowden

When using online video streaming services such as Muslin, each user generates a
history of watched videos. The platform provider can use this data for personalized
recommendations for new videos, or for targeted advertising. This can lead to major
threats to privacy as it is possible to infer private information about the user, such as his
gender, his origin, and his political, religious or sexual orientation.

In this chapter, we present PrivaTube [DSBMC+19], a practical and privacy-preser-
ving video streaming system.

5.1 Introduction

Very few privacy-preserving video streaming systems exist. Most of them rely on heavy
cryptographic mechanisms over multiple nodes, adding a performance and latency over-
head, effectively reducing QoE. Unlinkability-based techniques (i.e., fake requests) are
efficient but come at the cost of bandwidth and storage overheads. It is therefore chal-
lenging to provide both privacy guarantees and high QoE.

Simon Da Silva — Univ. Bordeaux, LaBRI 53 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.1. INTRODUCTION

? ? ? ?

PrivaTube
Content
servers

PrivaTube
Clients

Content
Delivery

Figure 5.1: PrivaTube illustration

PrivaTube aims to provide strong privacy guarantees with unaltered QoE and to
reduce costs even further than Muslin. PrivaTube is able to serve video content with a
high QoE to its users: low startup times, a constant and stable stream of high-bitrate
video, and no interruption in the playback. This performance is enforced by the use of
an edge-assisted CDN, allowing clients to fetch video content from both core servers
and several assisting peers having accessed the same video in the past (see Figure 5.1).
Indeed, PrivaTube extends MS-Stream [BQLN+18] (see Section 2.2.3), a protocol
for video streaming using multiple sources, compatible with the leading MPEG-DASH
standard [Sod11]. It ensures that the load on core servers is minimized, and that the
impact of timeouts and network failures is masked through redundancy.

PrivaTube preserves the privacy of its users by enforcing δ-unlinkability between
specific users and videos, for a chosen value of δ. Access histories are masked from the

Simon Da Silva — Univ. Bordeaux, LaBRI 54 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.1. INTRODUCTION

untrusted infrastructure hosting core servers and from other clients by leveraging Intel
SGX TEEs at both the client and server sides.

? ? ? ?

PrivaTube
Content
servers

PrivaTube
Clients

Fake
requests E?

D?C?B?

A?

Figure 5.2: PrivaTube fake requests illustration

PrivaTube further prevents assisting peers from inferring histories based on assistance
requests by introducing fake requests (see Figure 5.2). Fake requests have a cost, that is
turned to the system profit by using them for pre-fetching content onto assisting peers
and improving availability. This positively impacts QoE, in particular for low-popularity
videos, and improves PrivaTube scalability.

We implement PrivaTube and deploy it on a distributed testbed with up to 14
SGX-enabled servers and clients to evaluate its performance and behavior. We also
perform large-scale simulations based on a real-world data set of video access histories.
Our results show that PrivaTube leverages multiple sources and fake requests to improve
QoE, and compares favorably to non-privacy-preserving streaming. Besides, PrivaTube

Simon Da Silva — Univ. Bordeaux, LaBRI 55 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.2. SYSTEM MODEL AND OBJECTIVES

outperforms all current privacy-preserving video streaming systems by up to several
orders of magnitude in terms of latency and video bitrate (e.g., quality), as it has a
negligible impact on performance.

This chapter is organized as follows. We present an overview of the constituents
and privacy objectives of PrivaTube in Section 5.2. We detail how the system scales
and provides high QoE in Section 5.3, and how it preserves privacy in Section 5.4. We
discuss our contributions and provide a security analysis in Section 5.5. We implement
PrivaTube and deploy it on 14 SGX-enabled machines, then perform an extensive
evaluation, including micro-benchmarks, macro-benchmarks and a large-scale simulation,
all presented in Section 5.6. Finally, we conclude in Section 5.7.

5.2 System model and objectives

We start by detailing the service model and system constraints, followed by the adversarial
model and privacy objectives, that guide the design of PrivaTube.

Service model

We target the VoD service model, consisting of a video player in a web browser allowing
users to select and play videos from a publicly-known catalog. The objective is to reach
the highest possible QoE in terms of (1) bitrate, (2) quality fluctuations, (3) video
interruptions and (4) startup time, as they are the main factors impacting QoE [SES+14].

Deployment constraints

We target VoD providers who do not wish to monetize the personal data of their users
while requiring good scalability and reasonable operational costs, e.g., open and alternative
social media such as PeerTube [Peeb]. The provider uses public cloud infrastructures
to host servers for metadata and video content. For cost reasons, it does not use a
third-party CDN. The number and capacity of cloud servers are limited. In particular,
upload bandwidth for servers is not sufficient to successfully provision all clients with
high-quality video at a reasonable cost.

Simon Da Silva — Univ. Bordeaux, LaBRI 56 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.2. SYSTEM MODEL AND OBJECTIVES

Security assumptions

We assume that users trust their own machine but do not trust the other machines
on which PrivaTube runs, i.e., the public cloud infrastructure and the other users.
However, we assume that each node participating in PrivaTube is equipped with an
Intel SGX-enabled processor. We believe that this is a reasonable assumption given the
increasing availability of such processors on commodity hardware and cloud offerings
(e.g., Microsoft Azure). We assume that the code running inside SGX enclaves is trusted
(e.g., it does not contain bugs, backdoors). The trust in enclave code can be the result of
its certification by a trusted third party, e.g., the open-source community. We assume
that all used cryptographic primitives are trusted and that the adversary does not have
enough computational power to forge them.

Privacy objective

Our privacy objective is to prevent an adversary from being able to exploit video access
histories of any user in the system. This requires concealing the actual access history,
i.e., legitimate events related to the actual visualization of a video by a user should not
be collectible by the adversary in clear. The objective of PrivaTube is to achieve a
good privacy-utility tradeoff. It must limit the exposure of personal data to the adversary
on the one hand, and maintain cost-effectiveness and practicality (respect of high QoE
demand), on the other hand.

Adversary model

We assume an adversary that aims at breaking the privacy guarantee offered by the
system, i.e., uncovering the interest of users for specific video items. To reach this
objective, we assume the strongest possible adversary (in terms of means) that is a global
and active adversary. Global means that the adversary can monitor and record the traffic
on all network links. Active means that the adversary can control all infrastructure nodes
in the cloud, and run up to f client nodes to reach its objective. However, we assume that
the adversary does not aim at breaking the system operation (e.g., by running denial of
service attacks).

Our system design is detailed in Section 5.3, while privacy preservation is the focus
of Section 5.4.

Simon Da Silva — Univ. Bordeaux, LaBRI 57 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.3. PRACTICAL AND HIGH-QOE STREAMING

5.3 Practical and High-QoE Streaming

Tracker Metadata Content servers

Peers? Servers?

Bitrates?

Segments?

Figure 5.3: Streaming using video servers and assisting peers

We detail the architecture of PrivaTube and how adaptive and multi-source stream-
ing enables it to reach a high QoE.

5.3.1 Edge-assisted Content Delivery Network

To address the limited capacity of dedicated servers in providing video content to users,
we leverage an edge-assisted CDN. Figure 5.3 illustrates the architecture of PrivaTube,
without privacy enforcement. Video content is obtained from a combination of video
servers and assisting peers. Client nodes keep a cache of previously accessed videos, and
may be selected to act as assisting peers by other clients.

Video servers in PrivaTube are stable but come in limited numbers. Assisting peers
have limited bandwidth, and may leave the system at any time. Enforcing high QoE under

Simon Da Silva — Univ. Bordeaux, LaBRI 58 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.3. PRACTICAL AND HIGH-QOE STREAMING

these constraints leads to the following requirements. First, single servers or assisting
peers may not be able to provide alone the highest quality to a client. This requires the
ability to stream simultaneously from multiple sources. Second, faults and disconnections
may result in video interruptions. This requires some redundancy in the obtained video
content, enabling to switch back to lower-bitrate content rather than stopping the video.
Finally, the quality of network connections may fluctuate during a video playback session.
This requires a streaming protocol that seamlessly adapts to network conditions, and
that we describe next.

5.3.2 Adaptive Streaming

The PrivaTube streaming protocol extends the MS-Stream solution [BQLN+18] (see
Section 2.2.3) and is fully compatible with DASH. Figure 5.3 presents the complete
workflow of our extension.

Selection of assisting peers and servers

The selection of servers and sub-segments in the previous version of MS-Stream
exclusively favors QoE for the client, but does not consider different classes of servers
[BQLN+18]. In PrivaTube, we wish to limit the use of video servers and favor the use
of assisting peers. We extend MS-Stream for this purpose, as follows.

First, the use of assisting peers requires an additional service, the tracker. This server1

keeps track of the video access history of clients. It returns to the client a random subset of
up to 50 CAP (in Figure 5.3). For scalability reasons, the tracker does not maintain the
association between CAPs, individual segments, and specific bitrates. Peers may indeed
only have different qualities available for each segment, as a result of the adaptation
policy. Registering this fine-grained information with the tracker would greatly impair
scalability. Instead, clients register their access to the video with the tracker only once,
and clients must discover for each segment what bitrates are available from the CAPs.
This is done for each new segment (® in Figure 5.3).

Second, we modify the selection of sources, and the associated selection of sub-
segments, to favor the use of assisting peers over video servers. Following the quality

1We consider a single server for the tracker and for the metadata server in our implementation. They
are both built as stateless service tiers over NoSQL databases, offering excellent horizontal scalability
through already-available solutions [KPW+19]. We keep this extension for future work.

Simon Da Silva — Univ. Bordeaux, LaBRI 59 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.3. PRACTICAL AND HIGH-QOE STREAMING

discovery phase, the list of CAPs is pruned of peers who cannot offer the required HQ
quality for the segment. The selection uses a greedy algorithm iterating over remaining
CAPs and video servers. The selection considers first CAPs for which an estimation of
the upload capacity is available locally. This corresponds to peers which were used for
assistance in the past, and enables some stability in assistance relationships. Following
this, the selection considers other CAPs, i.e., for which this estimation is not available.
Video servers are finally considered if absolutely necessary. For each considered source,
the selection determines the maximal number of GoPs that can be served by the peer
in the target level of HQ, together with the other GoPs in LQ. This depends on the
bandwidth capacity estimation for this source. For CAPs for which the information is
unknown, a limited number (up to 4 over 12 in our implementation) of GoPs in HQ can
be requested. For each selected peer, a random set of uncovered GoPs in HD is assigned
in the corresponding sub-segment request, and the GoP is marked as covered with HD.
The selection stops when all GoPs are marked, and the sub-segment requests are sent
out (¯ in Figure 5.3).

Improvements

The establishment of downloads from assisting peers has a higher latency than the direct
download from video servers. In order to meet the QoE objective of fast video startup,
the first segment is downloaded directly using the standard DASH procedure from a
single video server.

We note that the effectiveness of selecting assisting peers instead of video servers
depends on the video popularity, directly resulting in more copies at client peers. Un-
popular content is at risk of being unavailable in the required quality in enough CAPs.
We actually address this problem together with privacy preservation, as described in
the next section. The concealing of users’ interests indeed relies among other measures
on the issuance of fake requests for content. We leverage these to the system’s interest,
implementing a cache pre-fetching strategy, and provisioning enough copies of all videos
on client peers. This reduces the load on video servers, even for less popular content.

5.3.3 Implementation

The base system, without privacy protection, is implemented as follows. The client is
written in JavaScript and runs inside a web browser. The metadata server is a key-
value store. It hosts and delivers MPD manifests to the clients. The video servers are

Simon Da Silva — Univ. Bordeaux, LaBRI 60 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.4. PRIVACY

implemented in Java and store unencrypted video content. The tracker is implemented
as an in-memory key-value store. All services are accessible through REST interfaces
over HTTP, including communication between clients.

5.4 Privacy

The goal of PrivaTube is to protect the access history of users (e.g., identified with their
IP address) to videos. This history should not be exploitable in the clear by anyone else
than the client node itself. In order to better understand who can learn this information
in PrivaTube, let us consider a user u interested in a video v. To this end, and following
(a simplified version of) the steps described in Figure 5.3, u formulates a request req
and sends it to the metadata server and to the tracker to collect the IP addresses of a
set of video servers and candidate assisting peers from which it will get segments for
reconstructing v. From these steps, and if no security mechanisms are used, one can
easily see that a number of nodes in the system can learn the link between u and v.
These include the tracker and the metadata server, using the information contained in
req, and the video servers and assisting peers as they serve segments of v directly to u.
Additionally, an adversary that listens to the network would also learn the link between u
and v either from the content of req or from the segments of v that u downloads. Finally,
an adversary that takes control of either of the above nodes would similarly learn the
link between u and v.

In the following, we present the two main security principles that PrivaTube uses
to protect the link between u and v. First, PrivaTube leverages Trusted Execution
Environment (TEE) at both the client and server sides to prevent data leakage. Second,
PrivaTube leverages fake requests to protect users access histories from insider attacks.

5.4.1 Trusted execution environments

Protecting the tracker

The tracker in PrivaTube stores information about nodes that have a local copy of a
video. This information is clearly critical and any adversary taking control of the tracker
would immediately break the privacy property we aim at preserving. In order to prevent
any information leakage, we run the tracker code inside a TEE. The tracker data is kept
encrypted in a local key-value store, and can only be accessed in the clear by the code
running inside the TEE enclave. Each tracker request only accesses a small subset of

Simon Da Silva — Univ. Bordeaux, LaBRI 61 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.4. PRIVACY

Tracker Metadata Content servers

Peers? Servers?

Bitrates?

Segments?

Figure 5.4: PrivaTube architecture for privacy preservation through HTTP proxies and
servers inside SGX enclaves

keys, henceforth the limited EPC memory size available to the enclave is not a limitation.
The resulting SGX-enabled tracker guarantees that the access history of users to videos
is protected even if an attacker takes control of the machine, of its operating system, or
of the local hypervisor.

Protecting the metadata server

The metadata server stores for each video a manifest (MPD) that contains a description
of the video and the list of servers from which its segments can be downloaded. A user u
wishing to access a video v needs first to retrieve the manifest of v from the metadata
server. To prevent any obvious linking between u and v, we run the metadata server code
and we store its data inside a TEE, as for the tracker.

Simon Da Silva — Univ. Bordeaux, LaBRI 62 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.4. PRIVACY

Protecting network traffic

As discussed above, an adversary listening to all network exchanges in the clear will
learn the link between u and v. In order to make the message exchanges unobservable,
all entities running in PrivaTube are put behind HTTP proxies running inside SGX
enclaves. HTTP proxies intercept, encrypt and decrypt all inbound and outbound traffic
as illustrated in Figure 5.4. Communicating proxies share a common encryption key
which is securely transmitted to both communicating enclaves if and only if its remote
attestation process succeeds. As such, an adversary listening to the network cannot learn
the link between u and v as messages circulating between the various HTTP proxies are
encrypted.

Using SGX-enabled HTTP proxies also allows protecting from an adversary taking
control of the various entities participating in PrivaTube. Indeed, while a tracker or
a metadata server can see an incoming request from u they can not have access to the
content of this request nor to the content of the response sent back to u. Video servers
and assisting peers serve video segments to u following requests forwarded by the proxy.
We assume that video servers are serving many requests simultaneously, hence disallowing
an adversary from precisely determining which specific incoming request at the proxy
corresponds to which outgoing request for a video segment, an assumption done in similar
systems such as Koi [GJP12].2 This is, however, not a property we can guarantee for
assisting peers who process a limited number of video segment requests. We explain next
how we mitigate this case using fake requests.

5.4.2 Fake requests

Using the above security mechanisms, u is able to stream v in a privacy-preserving
manner. However, the link between u and v can still be revealed if an attacker runs
its own client machine and starts issuing requests for v to uncover the community of
users interested in that specific movie. This attacker could send requests for v to the
tracker and collect the IP addresses of candidate assisting peers that possess segments
of v (including u), thus uncovering the link between u and v. In order to mitigate this
risk a key mechanism used in PrivaTube is the generation of fake requests. Specifically,

2We note that if this assumption does not hold, i.e., if there is insufficient concurrency for these
requests, it is possible to modify the proxy to arbitrarily reorder the existing traffic together with chaff
(fake) traffic. We leave, however, the implementation of such a feature to future work.

Simon Da Silva — Univ. Bordeaux, LaBRI 63 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.4. PRIVACY

each client participating in PrivaTube sends a given proportion of fake requests along
with legitimate requests.

δ-unlinkability

Fake requests allow PrivaTube to guarantee δ-unlinkability between users and videos
they are interested in. Enforcing δ-unlinkability means that at any point in time, the
probability of guessing that a user u is interested in a video v is at most equal to δ ∈ [0, 1].
Hence, the lower the value of δ the better the privacy of users. To enforce δ-unlinkability,
a client c must maintain at any point in time t a number Frt(c) of fake requests that is
defined as Frt(c) = Lrt(c) ∗ 1−δ

δ , where Lrt(c) is the number of legitimate requests it
has issued up to t. For instance, let us assume that the system designer wants to enforce
δ-unlinkability with δ equal to 0.5. Semantically, this means that the insider attack that
learns a link between u and v can only infer that u is interested in v with a probability
of 0.5, which is equivalent to flipping a coin. To enforce this property u would need to
maintain Frt(u) = Lrt(u) at any point in time, which corresponds to sending as many
fake requests as legitimate requests.

Generating fake requests

The difficulty when generating fake requests is to make them indistinguishable from
legitimate requests. Towards this purpose, fake requests in PrivaTube are generated
following the distribution of video popularities in the system. Relying on video popularity
allows avoiding awkward/detectable behaviors such as a very unpopular video being
requested too often (i.e., through fake requests). This behavior is not desirable because
on the one hand, the request may be spotted as being a fake request by an adversary
and on the other hand, replicating unpopular videos brings nothing useful to the system
operation, creating way more copies of video segments than what is actually needed to
ensure they will be available on assisting peers.

We implement two fake request generation policies, pop and samePop. All policies
are executed in the tracker, running inside an SGX enclave. The pop policy generates
fake requests by following the overall distribution of video popularity in the system. In
this policy, the tracker keeps track of the number of requests issued for each video so
far, which reflects their popularity. Every time a client issues a legitimate request, the
tracker suggests a fake request following the distribution of video popularity, i.e., popular
videos have a higher probability of being picked than unpopular ones. The samePop

Simon Da Silva — Univ. Bordeaux, LaBRI 64 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.5. DISCUSSION

policy generates fake requests by following the local popularity of requested videos. That
is, every time a user issues a request for a given video, the tracker suggests a video with
a popularity similar to the requested one.

5.5 Discussion

We present a security analysis of PrivaTube with a focus on its privacy guarantees.
Following this, we review compromises used in its design, and discuss limitations and
possible mitigations.

5.5.1 Security Analysis

This section presents the security analysis of PrivaTube. We focus on the enforcement
of the δ-unlinkability property. To this end, we consider whether the various entities
participating in the system are able to break the property or not.

On the client side

The code running on the client side is divided into two parts, the HTTP proxy running
inside an SGX enclave and the streaming client running outside of the enclave. A malicious
adversary running a client with the purpose of breaking other users’ privacy cannot bypass
the HTTP proxy and run man-in-the-middle attacks. However, it may issue specific
requests using the PrivaTube protocol and then learn from which assisting peers it is
downloading video segments. It can learn this by observing local traffic. However, thanks
to the use of fake requests, the adversary will not be able to infer whether the assisting
peers from which the video segments have been downloaded are effectively interested or
not by the corresponding video.

Furthermore, up to f malicious clients under control of the attacker and aiming at
weakening the δ-unlinkability property could modify the code of their local application
to avoid sending fake requests in the system. By doing this, the overall number of fake
requests in the system TFrt at a given point in time t will be equal to:

TFrt = (TLrt ×
1− δ
δ

)−
f∑
i=1

Frt(i) (5.1)

Simon Da Silva — Univ. Bordeaux, LaBRI 65 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.5. DISCUSSION

where TLrt is the overall number of legitimate requests sent in the system up to
time t. However, while this decrease may have an impact on the replication factor of
movies in the system, it will have no impact on the δ-unlinkability property of correct
nodes. Indeed, as the proportion of fake requests in the local history of a correct node is
preserved with respect to legitimate requests, an attacker that would uncover the link
between this user and a given movie would not be able to distinguish with a confidence
greater than δ whether the user is effectively interested in the video or not.

On the tracker side

The tracker code exclusively runs inside an SGX enclave. An adversary taking control of
the tracker cannot bypass the SGX enclave. Furthermore, as the traffic incoming and
outgoing from the enclave is encrypted, the only information that can be collected by
an adversary is that a given node is issuing a request. If there is no other traffic when
the user sends the request, the attacker may see from which video servers and assisting
peers the client is gathering video segments. Using this knowledge, the attacker may try
to learn the videos stored on these nodes by requesting them (in a brute force manner).
However, this knowledge would be insufficient to guess which exact video was downloaded
by the corresponding user and whether the latter was a legitimate or a fake request.

On the metadata server side

The reasoning is the same as for the tracker side. The metadata server holds important
information about which video server holds which video segments. However, the processing
of the request is performed inside an SGX enclave and the attacker may only learn the co-
existence of the request and flows to video servers and assisting peers, and not determine
which precise video was requested, and if it was a legitimate or fake request.

On video servers and assisting peers side

Video servers and assisting peers store video segments and serve these segments to
requesting users. But similarly to the metadata server and the tracker server, requests
on these nodes are handled inside SGX-enabled HTTP proxies. Hence, an attacker
taking control of these nodes will not be able to bypass the enclave and learn what
video segments are served to which specific user. A malicious video server or assisting
peer could nevertheless delete its local videos keeping a single (or a set of) semantically
sensitive video(s). As such it would learn the set of nodes requesting the latter. This

Simon Da Silva — Univ. Bordeaux, LaBRI 66 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.5. DISCUSSION

threat is mitigated by the use of fake requests as the adversary will not be able to get a
confidence greater than δ regarding the legitimate interest of the corresponding users on
this video.

5.5.2 Limitations

We discuss in this section the limitations of our system and how we expect to mitigate
them in our future work.

On the generation of fake requests

The generation of fake requests is an important mechanism in PrivaTube as it allows us
to enforce δ-unlinkability for correct users. However, to be effective, fake requests must be
forged in a way that makes them indistinguishable from legitimate requests. PrivaTube
uses movie popularity for the generation of fake requests (i.e., popular movies have a
higher probability to be selected as fake requests than unpopular ones). The probability
distribution of legitimate requests targets will be similar to the probability distribution of
fake ones. However, this policy does not capture particular access patterns to videos (e.g.,
users accessing a collection of movies in sequence such as the episodes of a given series).
These sequential accesses could be used to probabilistically distinguish legitimate from
fake requests. A solution would be to replace the generation of fake requests at the level
of a single video by generation of fake access logs, copying the access behavior of another
user. This may hinder the use of fake requests to implement proactive pre-caching of
video segments using fake requests. We will consider this approach in our future work.

On the use of Intel SGX enclaves on the client side

Assuming the use of Intel SGX enclaves on the client side could be a limitation to
the deployment of PrivaTube, in particular on portable devices. However, trusted
execution environments are becoming common place even in handheld devices (e.g., ARM
TrustZone [ARM]) which increases the likelihood for the adoption of PrivaTube in the
near future.

On the presence of freeriding assisting peers

Freeriders are a well-known threat to collaborative systems. A freerider is a node that
benefits from the system without contributing its fair share to it. In the context of Priva-

Simon Da Silva — Univ. Bordeaux, LaBRI 67 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.5. DISCUSSION

Tube, assisting peers could freeride by (for instance) turning off the application each
time they do not watch video streams. If a large portion of assisting peers behave as such,
there might be an impact on the overall QoE. We consider this problem as orthogonal
to the one considered in this chapter. Nevertheless, the problem of freeriders has been
widely studied in the context of collaborative systems in general and in the context of live
streaming in particular [LCW+06, DMPQ16, GHK+10, BCE+07, VRS+18]. We plan on
evaluating similar mechanisms (e.g., incentives or accountability mechanisms to track
freeriders) in a future version of PrivaTube.

On the integrity of videos served by assisting peers and video servers

Assisting peers and video servers could misbehave by replacing their video content with
junk videos. Mitigating this threat can be done by performing integrity checks on the
client side (e.g., using md5sum).

On the provision of video recommendations to users

PrivaTube does not support the provision of video recommendations to its users on its
own. The literature contains various research works in this direction, which could serve as
a starting point for integrating such functionality while preserving privacy. These solutions
rely either on adding differentially private noise [MM09] or on the use of cryptographic
primitives [GKP+17]. Nevertheless, as these solutions cannot provide recommendations
with unaltered performance and accuracy, we designed PProx, a privacy-preserving
recommender system (see Chapter 6).

On compromised client Intel SGX Enclaves

Our design relies on the proper implementation of Trusted Execution Environments
(TEEs). The Intel SGX TEE that we use in our implementation has been shown to be
vulnerable under certain conditions to side-channel attacks [VBMW+18, LSG+17]. The
protection against such attacks is an orthogonal concern to the design of PrivaTube.
We expect future iterations of Intel SGX to address these limitations, and other future
implementations of the TEE concept to avoid them by design. For current SGX-enabled
processors, solutions such as Varys [OTK+18] may be used to prevent side-channel attacks
from being exploited. A complementary approach, that we leave for future work, is to
limit the attack surface of potential leaks of enclave private keys, after an attack is
observed or suspected (e.g., using a detection system such as Déjà Vu [CZRZ17]). This

Simon Da Silva — Univ. Bordeaux, LaBRI 68 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

requires periodically rotating the long-term secrets provisioned to PrivaTube client
enclaves. Each rotation could spawn a Diffie-Hellman key agreement session, similarly
to the Intel SGX attestation procedure. This mechanism would achieve forward secrecy:
compromising a long term enclave private key does not compromise the session keys.

5.6 Evaluation

We proceed to the evaluation of PrivaTube. Our evaluation combines the analysis of
the performance and behavior of a prototype deployed over up to 14 SGX-enabled servers
and clients, and large-scale simulations based on a real-world data set of video access
histories.

We wish to answer the following research questions:

• What is the impact of proxy-ing the content requests through Intel SGX TEEs’
enclaves on throughput and latencies achievable by PrivaTube video servers?
(Section 5.6.2)

• Is the use of assisting peers successful in improving QoE for the clients, and does it
help to reduce the load on video servers? (Section 5.6.3)

• Are fake requests effective in hiding clients’ access patterns to videos, and in
improving performance and usefulness of assisting peers? (Section 5.6.4)

0
20
40
60
80

100

3 5 10 20 30 50 100
Time in ms

C
D

F
 (

10
0%

)

Server DASH ClearTube PrivaTube

(a) LD segments

0
20
40
60
80

100

3 5 10 20 30 50 100
Time in ms

C
D

F
 (

10
0%

)

Server DASH ClearTube PrivaTube

(b) SD segments

0
20
40
60
80

100

3 5 10 20 30 50 100
Time in ms

C
D

F
 (

10
0%

)

Server DASH ClearTube PrivaTube

(c) HD segments

Figure 5.5: Cumulative distribution of latencies over 200 requests for a 6-second segment
in various bitrates in DASH, ClearTube and PrivaTube without using network
emulation. Note that the abscissa uses a logarithmic scale.

5.6.1 Experimental setup

The PrivaTube prototype is deployed on a cluster of 14 SGX-enabled Intel NUC nodes.
Each node is an 8-core Intel i7 processor at 3.50 GHz with 32 GB of RAM. Nodes are

Simon Da Silva — Univ. Bordeaux, LaBRI 69 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

650 700 750 800 850
Throughput handled (Mbps)

L
at

en
cy

 (
s)

Server DASH ClearTube PrivaTube

Figure 5.6: Throughput and latency for DASH, ClearTube and PrivaTube, without
using network emulation. The inflection shows the saturation point of the three solutions.

connected in a LAN using 1 Gpbs Ethernet. The setup supports the use of network
emulation to emulate WAN links using the tc tool. Network emulation parameters for
video clients follow the DASH test case #2a (NP2a) [DAS]. This profile is based on
observations of the typical characteristics of network clients at DASH providers: an
incoming bandwidth of about 4 Mbps, a latency to the video servers of about 100 ms,
and a packet loss of about 7%. The network emulation for servers caps their uplink
bandwidth to 10 Mbps.

We use a video of 1 minute and 42 seconds, with 17 segments of 6 seconds. The video
is available on video servers in three qualities: LD, SD, and HD. The low definition LD
(bitrate of 512 Kbps) is used as the backup LQ quality in PrivaTube. LD segments are
about 250 KB in size after encoding.3 The SD and HD are the two available high-quality
(HQ) variants. As detailed in Section 5.3, clients may choose the HQ variant that matches
their download capacity. The SD (standard) definition (bitrate of 1 Mbps) leads to
segments of about 500 KB after encoding. The HD (high) definition (bitrate of 4.1 Mbps)
corresponds to the full HD quality. Segments in HD are about 2 MB after encoding.

Clients maintain a buffer of 30 seconds, i.e., upon starting a playback they download
5 segments (the first one from video servers, the following ones from a combination of

3The exact size depends on the codec and nature of the video.

Simon Da Silva — Univ. Bordeaux, LaBRI 70 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

video servers and assisting peers) and fetch a new segment as soon as one buffer slot is
consumed.

We compare PrivaTube to two baselines.4 The first baseline is the DASH standard.
Our DASH implementation uses the Nginx high-performance HTTP server [NGI]. The
second baseline is PrivaTube without enabling any of the mechanisms for protecting
users’ privacy. This corresponds to the system as described in Section 5.3, without any of
the additions detailed in Section 5.4. We call this version ClearTube, to emphasize
that exchanges happen in the clear. In more detail, ClearTube does not use HTTP
proxies running inside SGX TEEs, does not encrypt any of the exchanges, and does not
use fake requests.

5.6.2 Performance of video servers

We start by evaluating the impact of privacy preservation on the performance achievable
by a single video server. This performance is the primary measure of cost-effectiveness in
any DASH deployment. For a VoD provider, the achievable bandwidth with one video
server directly impacts return-on-investment (RoI). More specifically, we wish to assess if
the use of request proxying through SGX does not impair too much the performance of
each video server.

Our focus is on the throughput and latency limitation of one video server. As a result,
we do not use network emulation in this experiment. The comparative performance of
PrivaTube and ClearTube enables to isolate the overhead of using SGX-based HTTP
proxies. The difference between ClearTube and DASH allows us to isolate the impact
of requesting sub-segments and the need to assemble them at the video server level
(whereas DASH is able to directly serve pre-assembled segments).5

We first focus on request latencies. We set up a single client performing 200 consecutive
requests for a 6-second video segment. Figure 5.5 presents the cumulative distributions of
retrieval delays for the three available bitrates, using the three systems. Unsurprisingly,
DASH provides the lowest latencies, and latencies increase with the segment size. The

4We choose not to evaluate PrivaTube against indirection-based solutions such as Tor [DMS04] as
we aim at providing a high QoE, incompatible with the latency and bandwidth Tor provides. Besides, a
direct comparison with edge-assisted solutions such as Popcorn [GCM+16], Xunlei Kankan [ZLHC14] or
LiveSky [YLZ+09] is difficult, as there is no publicly-available implementation of these systems.

5One could cache pre-computed segments at a PrivaTube video server, but we did not implement
this optimization.

Simon Da Silva — Univ. Bordeaux, LaBRI 71 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

overhead of assembling sub-requests at the video server is highlighted by the performance
of ClearTube. For LD segments (250 KB), the DASH median efficiency (20 ms to serve
1 MB) is twice that of ClearTube (40 ms to serve 1 MB). For larger segments however,
this difference is attenuated, e.g., for HD segments (2 MB), the median efficiencies
are 12.5 ms versus 17.5 ms to serve 1 MB. The difference between ClearTube and
PrivaTube is more important, and is a result of using SGX for the HTTP proxy. The
establishment of a link between the enclaves at the client and the server, the exchange
of secrets for establishing the secure channel, and the encryption of communications,
all have an impact on latency. For LD segments, the median efficiency of PrivaTube
(160 ms to serve 1 MB) is 25% of the median efficiency of ClearTube (40 ms). However,
this difference is significantly reduced for larger bitrates. For HD segments, PrivaTube
reaches an efficiency difference of 36% (47.5 versus 17.5 ms to serve 1 MB). Despite
the unavoidable overheads linked with a higher level of security, PrivaTube achieves
median latencies of 95 ms (average 89 ms) for the HD bitrate, which remains negligible
in practice for 6-second segments.

We now focus on achievable throughput for a video server under a concurrent request
workload. We use only the HD quality, with video segments of size 2 MB. We set up
a client with the wrk2 workload injection tool for HTTP requests [Ten18]. We use 4
injection threads from a single client, after checking that this setup is enough to saturate
all three configurations. Figure 5.6 presents the achieved latencies for the three solutions
under an increasing number of requests. The latency in the non-saturated case (e.g., with
a total throughput of 650 Mbps) is close to the latencies for single requests (Figure 5.5c).
We observe an inflection point for the three systems, indicating that the server is no longer
able to serve incoming requests on time and reaches its maximal capacity. Again, the
difference between DASH and ClearTube allows isolating the costs of the extra protocol
steps in PrivaTube, without the use of the SGX HTTP proxy. ClearTube reaches
saturation at 796 Mbps, 95% of the max capacity of DASH (838 Mbps). Comparing
PrivaTube with ClearTube allows isolating the cost of the SGX HTTP proxies and
of end-to-end encryption. PrivaTube saturates at 695 Mbps, 87% of ClearTube,
and 83% of DASH. The saturation point of a single PrivaTube server corresponds
to 260 clients consuming full-HD content, while ensuring privacy and enabling the use
of assisting peers, against 312 clients with DASH. Again, the added value of privacy
protection justifies this overhead.

Simon Da Silva — Univ. Bordeaux, LaBRI 72 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

●

●

●

●

0

1

2

3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D
ow

n
lo

ad
 t

im
e

(s
)

(a) DASH

●●●

●

●●●

●
●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●

●

●●●●●
●●
●●
●

●

●

●

●

●

●

●
●
●●
●●
●●
●●

●

●

●

●

●
●

●●

●●

●●●●●

●

●

●

●

●

●

●
●
●
●●●●
●●

●

●

●

●

●

●

●●

●●●●
●●●●

●

●

●

●

●

●

●●●●●
●

●

●

●

●

●0

1

2

3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D
ow

n
lo

ad
 t

im
e

(s
)

(b) ClearTube

●●●

●

●●●

●

●

●

●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

0

1

2

3

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

D
ow

n
lo

ad
 t

im
e

(s
)

(c) PrivaTube

Figure 5.7: Distributions of segments download times

5.6.3 Impact of assisting peers

In this second experiment, we evaluate the complete PrivaTube infrastructure. We use
the 14 nodes. We use one node to host the tracker, and one node for the metadata server.
To emphasize the limited capacity of the VoD provider infrastructure, we use a single
video server. The remaining 12 nodes are used as clients, denoted as C1, C2, . . . , C12.

Simon Da Silva — Univ. Bordeaux, LaBRI 73 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

1

2

3

4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

B
it

ra
te

 (
M

b
p
s)

(a) DASH

1

2

3

4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

B
it

ra
te

 (
M

b
p
s)

(b) ClearTube

1

2

3

4

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

B
it

ra
te

 (
M

b
p
s)

(c) PrivaTube

Figure 5.8: Distribution of achieved playback bitrates

We use the network emulation settings described in our evaluation setup. As before, we
compare DASH, ClearTube and PrivaTube.

Initially, the video is only available at the video server in all three qualities (LD, SD
and HD). Clients initiate streaming sessions to obtain and play the entire video. Each
session starts by the download of the first segment from the video server, followed by the

Simon Da Silva — Univ. Bordeaux, LaBRI 74 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

sequential request for 4 more segments from the video server and assisting peers, if any
are available to provide the content. This allows filling the 5 initial slots in the client’s
buffer.

Client C1 starts at time 0, followed by C2, C3 and C4 each with a 10-second interval.
10 seconds after the start of C4 (40 seconds after C1), we emulate a flash crowd where
the remaining 8 clients are started in sequence without additional inter-arrival delays.
We observe two key performance indicators. The download time for individual segments
indicate if the system operates in a non-saturated mode, and whether clients are subject to
resource contention. The achieved quality rate is the effective bitrate at which clients were
able to play the video. It is directly linked with the download capability: the adaptation
automatically switches to a lower bitrate when the target bitrate cannot be obtained
without a risk of rebuffering. There were no rebuffering in our experiments, but the three
solutions differ greatly in achieved quality rate and its stability, directly impacting QoE.

Figure 5.7 presents the distribution of segment download times, while Figure 5.8
presents the achieved playback rates. We observe only very minor variations in achieved
metric values over different runs and therefore report values over a single, randomly-
selected one.

We observe that DASH performs well for the first 4 clients. Indeed, these clients are
free to download and fill their buffers from the video server without interference with
the other peers: the server has an upload of 10 Mbps, hence requiring 8 seconds to fill
the 8 MBs of the buffer with video in HD. However, when the number of client increases
we observe a tremendous increase in download times for individual segments, indicating
that the server is not able to catch up with the requested throughput. The direct effect
is that some clients (C9 to C12) adapt their requested bitrates to avoid a rebuffering.
The QoE for these clients decreases significantly.

The general performance of ClearTube and PrivaTube follow the same trend. In
concordance with our previous experiments, we observe additional latencies for segment
download times with PrivaTube compared to ClearTube, due to the use of SGX-
supported proxies (Figures 5.7b and 5.7c). When client C2 starts its session, C1 has
already downloaded the first six segments from the video server and is selected as assisting
peer by C2 for segments 2 to 5 to the extent of its upload bandwidth capability (capped
to 4 Mbps). When peer C3 starts, both C1 and C2 are available, and so on. We observe
in Figure 5.7b that the median download time actually decreases with more peers, and
therefore more potential sources, but also results in more outliers for clients that start
at the same time. The largest outlier is for the first segment, that has to be retrieved

Simon Da Silva — Univ. Bordeaux, LaBRI 75 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

from the video server under contention, and due to competing requests towards the same
assisting peers. The scenario of the addition of 200% more peers is a worst-case one;
yet, PrivaTube succeeds in keeping the average and median download times to less
than a second. The result on QoE is immediately visible on the achieved playback rates
(Figure 5.8). All clients achieve a very stable (narrow) distribution with high bitrates.
Differences between ClearTube and PrivaTube are negligible in terms of QoE, and
the experiment demonstrates the impact of using multiple sources and assisting peers on
maintaining playback quality even during a sudden increase in the number of clients.

5.6.4 Fake requests and pre-fetching policies

We finally evaluate the beneficial impact of fake requests on QoE. We discussed the
privacy impact of fake requests in Section 5.5.1. We focus here on how fake requests’
ability to pre-fetch content onto clients enables improving availability and the general
utility of assisting peers. Our evaluation is based on simulations, in order to be able to
use a large dataset denoting the interest of users in movies.

Dataset

Access histories to large VoD services are not public for obvious privacy reasons, and it
would be unethical to exploit the lack of privacy of existing services to collect such data.
We build instead video access histories from publicly-accessible data. More specifically,
we use the complete year of 2014 of the open and non-commercial MovieLens [HK15a]
movie rating network.6 MovieLens allows cinema enthusiasts to rate movies and enable
personalized recommendations. 7,763 users produced 39,177 ratings for 4,283 distinct
movies in 2014.

The cumulative distribution of movies popularity in MovieLens is presented in
Figure 5.9. It is a heavy-tail distribution typical of VoD systems [CPK95, YZZZ06].
50.42% of the movies were rated only once, while the most popular was rated 64 times.
Obviously, this represents only a sample of actual accesses and interests in movies, as
only a small fraction of users rate movies they watch on MovieLens. We posit however
that this fraction is a uniform sample, making this dataset statistically representative of
what a sampling of actual accesses to videos in a large-scale VoD system would yield.

6We chose 2014 as it is the last available full year from MovieLens 20M dataset (01/1995 to 03/2015).

Simon Da Silva — Univ. Bordeaux, LaBRI 76 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●● ●●● ●●●●● ● ●●● ●●●●● ●●● ● ●●● ● ●●●● ● ● ●● ● ●●●●● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ●●● ● ● ● ●●●●●●●

0

20

40

60

80

100

1 2 3 5 10 20 30 50
Popularity index (log scale)

C
D

F
 (

10
0%

)

Figure 5.9: Distribution of movies popularities in MovieLens

We build a timeline of accesses to videos from the MovieLens dataset. We consider
the rating of a given movie by a user as a timed event, denoting the access to the video.
The series of events is used as an input to the simulator.

Simulation

We emulate both legitimate requests (i.e., access events from the MovieLens data set)
and fake requests. We implement the two policies for generating fake requests detailed
in Section 5.4 in the tracker: pop considers the distribution of popularities of previously
requested videos, and draws a random one according to this distribution; and samePop
specifically picks a random video with the same level of popularity as the one requested
in the legitimate request. In addition, we consider a third baseline policy, in order to
highlight the impact of considering past access histories when generating fake requests:
rand simply selects a random video from the list of all previously requested videos,
regardless of their popularity.

We are interested in the increase in availability that fake requests allow. Ideally, we
would like the number of copies of each video to be sufficient to allow downloading most
segments from assisting peers rather than from the video servers.

We split the data set of accesses in two periods, with accesses done from January
to the end of September 2014 in the first period, and accesses made in the remaining

Simon Da Silva — Univ. Bordeaux, LaBRI 77 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.6. EVALUATION

1

2

3

4

5

1 10 20 30 40 50 60
Original number of replicas

In
cr

ea
se

 f
ac

to
r

(l
og

 s
ca

le
)

Policy rand pop samePop

Figure 5.10: Replicas increase factor, δ = 50%

3 months in the second period. We use the first period to compute popularities in the
system, as the number of requests for each video. The popularity for a video v at the end
of the first period is denoted as v1st . We then replay the accesses in the second period,
and for each access, use the selected fake requests policy. At the end of the second period,
we record the number of copies of the video as v2nd . We define the replica increase factor
as the ratio v2nd/v1st . Figure 5.10 presents the distribution of this metric, as a function
of v1st , when exactly one fake request is sent for each video access (δ = 50%).

We can observe that the rand policy results in a heavy bias towards increasing the
availability of low-popularity videos. This is not surprising, as these videos dominate
in the data set, and are therefore more likely to be selected by a random draw. On the
other hand, rand only marginally increases the number of replicas for the rest of the
distribution. The pop and samePop policies, on the other hand, are effective at increasing
the number of replicas regardless of the original popularity of the video.

We present aggregate results for two other values of δ, the probability to link a user
to a video, in Table 5.1. We can observe that the target number of pre-provisioned copies
of each video is achieved with great stability for both pop and samePop, but with a high
skew for rand. There is no significant advantage in availability between pop and samePop.
It is therefore sensible to favor samePop, to also hide the individual distribution of access
video popularities for each individual user. The samePop policy is also more stable. It
deviates less than pop, according to the results.

Simon Da Silva — Univ. Bordeaux, LaBRI 78 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.7. CONCLUSION

Table 5.1: Replicas increase factor for various values of δ

δ = 66% δ = 50% δ = 25%
fake req. × 0.5 × 1 × 3

M
ea
n

M
ed

ia
n

St
d.

D
ev
.

M
ea
n

M
ed

ia
n

St
d.

D
ev
.

M
ea
n

M
ed

ia
n

St
d.

D
ev
.

rand 2.3 1.7 1.4 3.5 2.5 2.6 8.6 6.0 6.9

pop 1.5 1.5 0.5 2.0 2.0 0.6 4.0 4.0 1.1

samepop 1.5 1.5 0.5 2.0 2.0 0.6 4.0 4.0 1.1

5.7 Conclusion

Access histories can reveal critical personal information, and centralized video streaming
solutions are notorious for exploiting personal data. The platform provider can use this
data for personalized recommendations for new videos, or for targeted advertising. This
can lead to major threats to privacy as it is possible to infer private information about
the user, such as his gender, his origin, and his political, religious or sexual orientation.
Hiding the interests of users from servers and edge-assisting devices is necessary for
a new generation of privacy-preserving streaming services. However, very few privacy-
preserving video streaming systems exist. Most of them either rely on heavy cryptographic
mechanisms, adding a performance and latency overhead, effectively reducing QoE, or
on unlinkability-based techniques (i.e., fake requests), with high bandwidth and storage
overheads. Therefore, the state of the art was still lacking an efficient streaming system
providing both strong privacy guarantees and unaltered QoE.

To tackle this challenge, we presented our second contribution, PrivaTube, a practical
and privacy-preserving VoD streaming system. PrivaTube aggregates video content
from multiple servers and edge peers to offer a high QoE for its users. It enables privacy
preservation at all levels of the content distribution process. It leverages TEEs at servers
and clients, and obfuscates access patterns using fake requests that reduce the risk of
personal information leaks. Fake requests are further leveraged to implement proactive
provisioning and improve QoE, filling two needs with one deed. We implemented Priva-
Tube and showed in an extensive evaluation of our prototype involving 14 SGX-enabled
servers and clients that PrivaTube reduces the load on servers and increases QoE
while providing strong privacy guarantees. Indeed, the provided QoE is far greater than
traditional HAS streaming, with up to +300% video bitrate (i.e., quality). The main

Simon Da Silva — Univ. Bordeaux, LaBRI 79 High-QoE Privacy-Preserving Video Streaming

CHAPTER 5. PRIVATUBE 5.7. CONCLUSION

downside is a 36ms to 71ms longer startup delay due to encryption and proxying, which
is negligible in practice.

To further improve privacy while providing a high QoE, one must implement a privacy-
preserving recommender system to complement PrivaTube. Indeed, video streaming
platforms usually provide recommendation services to retain users on their website or
application. Yet, they pose a serious threat to privacy, as user profiles are established
based on the watching history. Our next step towards an unaltered QoE is thus to provide
privacy-preserving recommendations to end-users without compromising on quality and
performance.

Simon Da Silva — Univ. Bordeaux, LaBRI 80 High-QoE Privacy-Preserving Video Streaming

Summary

PrivaTube extends MS-Stream to offer a high QoE by aggregating video content
from multiple servers and edge peers. Users’ privacy is preserved through encryption
in HTTP proxies running in Intel SGX enclaves, and fake requests to obfuscate access
patterns. Fake requests are further leveraged to implement proactive provisioning and
improve QoE. Compared to a typical DASH setup:
• 2× to 15× faster video segments download

• +40ms slower startup delay (first segment)

• +10% to +300% video bitrate

• -17% raw server throughput

Simon Da Silva — Univ. Bordeaux, LaBRI 81 High-QoE Privacy-Preserving Video Streaming

Chapter 6

PProx: High-QoE
privacy-preserving
Recommendation as a Service

The fantastic advances in the field of electronic communication
constitute a greater danger to the privacy of the individual.

— Earl Warren

Video streaming platforms (such as YouTube [You20], Vimeo [Vim20] or Dailymo-
tion [Dai20]) often feature recommendations for similar content to end-users. They rely
on these recommendations to retain users on their website or application. To do so, they
establish a user profile based on the watching history. This leads to threats to privacy as
(i) service providers gather private data on each user, (ii) an adversary can intercept rec-
ommendations and deduce private information about the user, or (iii) malicious platform
providers can display targeted ads tailored to a specific user instead of a generic profile
to generate income.

To this end, we present PProx, an efficient and easily-deployable solution for privacy
preservation in recommendation engines and RaaS.

6.1 Introduction

A few privacy-preserving recommender systems exist. They can be either cryptography-
based, usually very slow (several seconds latency); differentially private with added noise,

Simon Da Silva — Univ. Bordeaux, LaBRI 83 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.1. INTRODUCTION

IA

Legacy
Recommendation

System

�

?

UA

??

��

? ??

PProx

Figure 6.1: PProx illustration

thus inaccurate; or P2P-based and decentralized, often slow, less accurate and unreliable.
Besides, all of them use specific recommendation algorithms, and require to install a
heavy code layer at the client side. Current reliable and accurate privacy-preserving
recommendation systems have a latency between 10 and 100 seconds on a high-end server
CPU. It is therefore challenging to provide privacy-preserving recommendations without
compromising on quality and performance.

To tackle these issues, PProx introduces a privacy-preserving proxy service, standing
between users and any off-the-shelf unmodified Legacy Recommendation System (LRS).
This proxy service intercepts feedback insertions and requests for recommendations. It
pseudonymizes on the fly the user and items identifiers, and hides links between the two.
This guarantees unlinkability between clients and the items they access or receive as
recommendations. The deployment of PProx does not require to provision private keys or

Simon Da Silva — Univ. Bordeaux, LaBRI 84 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.1. INTRODUCTION

models to the user side. PProx does not modify in any way the requests results returned
by the LRS (e.g., by adding noise or returning an overset of results) and its use is totally
transparent for the users.

PProx leverages the support in modern cloud infrastructure for a Trusted Exe-
cution Environment (TEE), specifically Intel SGX [CD16b], allowing to run secure
enclaves on untrusted hardware. In contrast with earlier work using SGX to pro-
tect the privacy of access to online services [KCG17, KPW+19, MBF+17b] the de-
sign of PProx acknowledges the possible vulnerability of Intel SGX to side-channel
attacks [WCP+17, GESM17, BMD+17, CCX+19, SLM+19, VBMW+18, MIE17]. In ad-
dition, it considers the vulnerability of the cloud infrastructure to timing attacks on
network flows resulting from clients’ interactions with the recommendation engine.

To prevent an adversary from breaking unlinkability properties using a side-channel
attack, PProx implements a data partitioning principle where the information necessary
to link a user to a specific item or recommendation is split between two layers running
in different SGX enclaves. This is based on the observation that implementing side-
channel attacks on multiple nodes in a limited time is unlikely to happen synchronously,
leaving time to detect breaches [CZRZ17, GLS+17, OTK+18] and take appropriate
countermeasures. Protection against timing attacks is achieved with the help of request
and response shuffling, hiding the correlation between flows while respecting tight bounds
on additional service latency (see Figure 6.1).

PProx is integrated with Harness [Acta], an open-source machine learning platform,
and its Universal Recommender [Actb] module. Harness is representative of a LRS
used by a RaaS provider: it supports high-throughput and low-delay operations, and
scales horizontally to serve growing user bases. PProx is also able to similarly scale
horizontally to handle varying load while minimizing the impact of privacy-preservation
on performance.

Our evaluation over a 27-node/54-core Kubernetes cluster of Intel SGX-capable NUC
servers, and using a real-world workload, shows that PProx is able to efficiently protect
privacy while respecting strict end-to-end latency objectives, and to scale up to handle
increasing workloads in unison with the scaling of the LRS. A single instance of PProx

can handle 250 requests per second using 4 cores, and it scales up to 1.000 requests
per second using 4 proxy instances, matching the capacity of a 32-core deployment of
Harness.

We detail our system and adversary model in Section 6.2. We give a high-level
overview of PProx in Section 6.3. We present the construction of the proxy service in

Simon Da Silva — Univ. Bordeaux, LaBRI 85 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.2. SYSTEM MODEL AND OBJECTIVES

details in Section 6.4, and its implementation in Section 6.7. We discuss the security
of PProx in Section 6.5. We overview the integration of PProx with Harness universal
recommendation engine in Section 6.6. We evaluate the resulting system on a 27-node
Kubernetes cluster and present our results in Section 6.8, then conclude in Section 6.9.

6.2 System model and objectives

We start by defining our system model, our assumptions, our security objectives, and the
power of the adversary.

6.2.1 System model

Figure 6.2 illustrates the constituents of the system. Users interact with a website or
application offering access to items, e.g., books, news articles, or movies (À). This service
outsources the management of a recommendation feature embedded in its front-end to a
Recommendation-as-a-Service solution running in a public cloud (Á).

The RaaS runs a Legacy Recommendation System for the application (Â), accessed
via a simple REST API. Call post(u, i[, p]) allows user u to send feedback to the
recommendation engine about access to item i with an optional payload p, if required
by the recommendation algorithm. For instance, a movies recommender may leverage
ratings by the user, while a recommender for items in an online store may only require
identifiers. Call get(u) returns a collection of n items (i1, . . . , in) recommended to user u.

PProx introduces an additional component, the privacy-preserving proxy service (Ã),
lying between the clients and the LRS. It runs as part of the RaaS in the same public
cloud as the LRS to avoid indirections through multiple data centers and the resulting
impact on latency.

A thin user-side library, easily embeddable in the application or web front-end as
static web code, and offering the exact same REST API as the LRS, intercepts, encrypts
and forwards clients’ API calls to the proxy service, and, in the case of get calls, returns
the list of recommendations (Ä).

6.2.2 Trust and operational assumptions

The user-side library is considered trusted for the processing and handling of personal
data, i.e., its code is public, in an interpreted language, and it can be audited by external

Simon Da Silva — Univ. Bordeaux, LaBRI 86 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.2. SYSTEM MODEL AND OBJECTIVES

SGX enclaves

Recommender
-as-a-Service
(RaaS)
running on an
untrusted
cloud

 Legacy Recommendation System (LRS)

UsersApplications

unlinkable
feedback

unlinkable
recommendation

encrypted
cleartextcompromised

PProx

secure

observes

untrusted
cloud

adversary

Thin user-side
library

1

2 3

4

5 5

1

2

3

4

Figure 6.2: PProx system constituents (À-Ä in §6.2.1) and adversary model (Ê-Í in
§6.2.3)

parties. We also trust the user: protecting against a compromised browser or application
is orthogonal to this work.

The LRS and proxy service run on an untrusted public cloud, subject to attacks and
possible data leaks. We do not wish, therefore, to trust this infrastructure for processing
information in the clear. We assume, however, the availability in this public cloud of a
Trusted Execution Environment. Our implementation uses specifically Intel SGX [CD16b].
We trust Intel for the certification of genuine SGX-enabled CPUs, and we assume that
the code running inside enclaves is properly attested before being provided with secrets.

A LRS is typically built over data processing frameworks, e.g., Apache Spark, and
databases, e.g., MongoDB, preventing from using source-based application partitioning
techniques such as Glamdring [LPM+17]. As the data that the LRS uses is almost entirely
of sensitive nature, the trusted computing base is potentially very large, preventing the
use of full-application containment, e.g., using SCONE [ATG+16]. It is not desirable,
under these conditions, to run the LRS itself inside SGX enclaves and we reserve their
use for the proxy service, which we design to take into account TEE constraints.

Simon Da Silva — Univ. Bordeaux, LaBRI 87 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.2. SYSTEM MODEL AND OBJECTIVES

6.2.3 Privacy objectives and adversary model

The goal of PProx is to preserve User-Interest unlinkability. It should be impossible
for an adversary to relate a specific user (as identified by their identifier or any unique
characteristic, e.g., their IP address or geographical location) to an access to an item or
of their possible interests as reflected by received recommendations. More formally, it
should be impossible for an adversary to (1) learn that a user u called post(u, i[, p]) for
item i and (2) that a user u received a recommendation for an item i following a get(u)
call.

We consider a powerful adversary (Figure 6.2, Ê). This adversary wishes to break
the unlinkability property by observing all components of the RaaS backend. It does
not, however, interfere with the functionality of the system, as it does not attempt to
manipulate or bias the recommendations returned by the LRS, and it does not block or
delay the access to the service for specific users or specific applications.

As the cloud is untrusted, we consider that the adversary can successfully attempt
to break security measures put in place by RaaS providers, such as system-level access
control or the use of secure connections (TLS/SSL) to and from its clients [WXW14].
We consider, therefore, that the adversary may see all API calls to the LRS in the clear,
and can access any data manipulated by the LRS when computing recommendations (Ë).
Similarly, the adversary may have control over the public cloud infrastructure including
its network appliances and we assume it is able to observe network connections both
from outside and within the data center (Ì).

Our design takes into account the possibility, highlighted by recent work, of time-based
or cache-based side-channel attacks on SGX [WCP+17, GESM17, BMD+17, CCX+19,
SLM+19, VBMW+18, MIE17], allowing an adversary to access the secrets that were
provisioned to an enclave. This contrasts with previous designs that consider enclaves as
inviolable [ATG+16, KPW+19, KCG17, MBF+17b]. Mechanisms such as Cloak [GLS+17],
Déjà Vu [CZRZ17] or Varys [OTK+18] allow, on the other hand, to detect the occurrence
of such attacks and to respond appropriately (e.g., by shutting down the system and
restart it after a security audit and using new secrets). Our model includes, therefore,
the possibility for the adversary to compromise and break into a single enclave at a time,
on any server. For instance, we illustrate in Figure 6.2 that the top-left enclave of the
privacy-preserving proxy service has been compromised and its secrets leaked to the
adversary (Í).

Simon Da Silva — Univ. Bordeaux, LaBRI 88 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.3. PPROX IN A NUTSHELL

6.3 PProx in a nutshell

In addition to its privacy objectives, PProx targets the ability to sustain the load achievable
by the LRS, the compliance with RaaS service-level objectives, and ease of deployment.
First, it must scale to large RaaS installations, with a potentially high throughput of
user requests for both insertions of feedback and collections of recommendations. We
assume that the LRS system scales horizontally (i.e., by adding more machines). The
privacy-preserving proxy service must, therefore, also scale horizontally. At the same
time, the amount of resources required for enabling privacy, and the additional costs
that will have to be supported by the application (as a client of the RaaS), must remain
within a fraction of the costs required to operate the LRS itself. Second, the interaction
of users with the RaaS solution must happen with small delays (typically, at most a few
hundred milliseconds for the overall processing of the request in addition to the network
delay to/from the user)1. Finally, ease of deployment requires that the integration with
the website or application only relies on static code and globally known information, does
not require the intervention of users and does not require maintaining state specific to a
RaaS service across sessions.

A two-layer privacy-preserving proxy service. At the core of PProx is a proxy
service that guarantees that (1) the LRS only sees pseudonymous information, for both
user identifiers and item identifiers2 and (2) that it is impossible to relate a call from
some user to a call sent to the LRS (and similarly for responses from the LRS to the
user).

We start by observing that mapping a user identifier to a pseudonym in a single SGX
enclave acting as a proxy and forwarding the pseudonymized request to the LRS is not
sufficient under our adversary model. The adversary may, indeed, compromise this single
enclave and learn the direct associations between user identifiers and item identifiers.
PProx uses instead a two-layer proxy service, with the two layers running in distinct SGX
enclaves on different servers. The foundational principle of this design is that no enclave
is provisioned with all the secrets necessary to an adversary to break unlinkability:

1It is not desirable, for these reasons, to rely on external anonymity services such as AnonyFlow [MSO12]
or Tor [DMS04], for their lack of reliability guarantees and their important impact on latency.

2We note that for companies operating in the EU market, the storage of pseudonymous informa-
tion for user identifiers can help comply with the requirements of the EU’s General Data Protection
Regulation [HEE18].

Simon Da Silva — Univ. Bordeaux, LaBRI 89 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.4. PPROX PROTOCOL DESIGN

• The first layer, the User Anonymizer (UA) is responsible for hiding the identity
of the user by replacing it with a pseudonymous identity. It is able to see the IP
address and the identifier of the user but it is not able to see the identifiers of the
items sent by or returned to this user.

• The second layer, the Item Anonymizer (IA) is the one that directly interacts
with the LRS. It is the only layer able to access items identifiers in the clear, but
it is not able to access user identifiers or IP addresses. It can map actual item
identifiers as used in the application’s catalog to pseudonymous identifiers used by
the LRS, and reversely.

Both layers can support an arbitrary number of enclave instances. All enclaves from
the same layer are provisioned with the same secrets, but they do not need to share a
common mutable state. This is key in enabling the proxy service to horizontally scale
and handle more requests.

Protection from network inference. Attacking an enclave is not the only way the
adversary may attempt to break unlinkability. As we consider it may observe communi-
cations with the LRS in the clear, the adversary could monitor the series of interactions
that occur between the user and the UA layer, between the UA and the IA layers, and
finally between the IA layer and the LRS. It could, eventually, link a specific IP address
and both the pseudonymous user identifier and items used for the actual request.

PProx protects against such attacks by shuffling communication for anonymizing
requests of multiple users between the UA and IA layers. We make the assumption that
the system is under a flow of requests of sufficiently high volume (e.g., 50 per second in
our evaluation). Redirections only happen after a configurable number of requests have
been buffered, and these requests are sent in a randomized order. The adversary cannot,
as a result, determine precisely which final request sent to the LRS in the clear correspond
to a specific incoming request to the UA. The same applies to responses sent back from
the LRS to the user side. The use of buffering introduces a queuing delay to every request
but this delay does not prevent from achieving overall latencies of at most a few hundred
milliseconds, as required for the user to consider the system interactive [ABC14].

6.4 PProx protocol design

We detail in this section the PProx protocol, from the interception of requests at the
application side to their handling by the proxy service, and their final processing by the

Simon Da Silva — Univ. Bordeaux, LaBRI 90 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.4. PPROX PROTOCOL DESIGN

u User identifier
i1, ..., in Item identifiers

UA User Anonymizer, 1st layer of the proxy service
IA Item Anonymizer, 2nd layer of the proxy service

pkUA Public key of User Anonymizer layer
skUA Private key of User Anonymizer layer
pkIA Public key of Item Anonymizer layer
skIA Private key of Item Anonymizer layer

kUA Permanent symmetric key of User Anonymizer layer
kIA Permanent symmetric key of Item Anonymizer layer
ku Temporary symmetric key generated by user u

enc(x, {p|s}k) asymmetric encryption of x using public/private key k
det_enc(x, k) deterministic symmetric encryption of x using key k

S Size of the shuffling buffer

Table 6.1: Notations

LRS. We use the notations listed in Table 6.1. We focus on the protocol in this section
and discuss its implementation in Section 6.7. We analyze its security in Section 6.5.

6.4.1 Provision and use of cryptographic material

Each of the UA and IA layers is composed of a number of SGX enclaves, All enclaves
in a given layer run the same code and are provisioned with the same secrets. Enclaves
in the UA layer are provisioned with private key skUA and a permanent symmetric key
kUA. Enclaves in the IA layer are provisioned with skIA and kIA. Provisioning the same
keys to all enclaves in a layer is necessary to enable stateless load balancing of incoming
requests, simplifying the implementation of horizontal scaling. New enclaves are attested
upon their bootstrap before being provisioned with these keys. The two types of keys
serve complementary purposes:

• Public/private key pairs enable the user-side library to encrypt information for
exclusive visibility by one of the two layers. For instance, the user identifier should
only be visible in the clear by the UA layer. The user-side library intercepts the
cleartext request and transforms u into enc(u, pkUA) so that only UA enclaves may
recover u from the ciphertext using skUA. However, this same ciphertext cannot
be used as the pseudonym of u with the LRS, as it is the result of randomized
encryption: two encryptions of the same u yield two different ciphertexts and do
not allow linking to a single pseudonymous user profile.

Simon Da Silva — Univ. Bordeaux, LaBRI 91 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.4. PPROX PROTOCOL DESIGN

• The permanent symmetric keys kUA and kIA are used for deterministic encryption
of the users’ and items’ identifiers, enabling their pseudonymization. A UA enclave,
accessing some user identifier u in the clear, can encrypt it such that the resulting
ciphertext is the same as with another encryption of the same input. The same
applies to the IA layer, where an enclave must be able to deterministically encrypt
an item identifier ix it sees in the clear. While deterministic encryption has lower
security (e.g., less resilience against know-plaintext attacks than probabilistic
encryption), it is necessary to allow the LRS to recognize two encrypted user
or item identifiers as being the same entity. We enable deterministic symmetric
encryption by using the AES 256 CTR block cipher with a constant initialization
vector.

In addition to these permanent keys provisioned to enclaves, PProx uses temporary
symmetric keys generated by the user-side library in order to protect the result of a get

request (collection of recommendations). The temporary symmetric key for a user u is
denoted as ku. We note that, unlike for using kUA and kIA in symmetric encryption for
pseudonymization, the encryption of return results uses regular randomized encryption,
i.e., AES with a random initialization vector.

6.4.2 Transparent REST calls redirection

The LRS offers a REST API and the user-side library intercepts unmodified calls to
this API. The user-side library and the two proxy service layers modify the headers, to
implement redirections, and payloads, to enable encryption. Each proxy maintains a
table T storing the association between an inbound socket I (from the user-side library
or from another proxy) and an outbound socket O (to another proxy or to the LRS).
Responses from the LRS are forwarded backward using the same path as for the incoming
request. The response is finally provided to the application by the user-side library as if
it was returned by the LRS itself. We discuss the implementation and performance of
redirections and the maintenance of T in Section 6.7 and focus in the following on the
end-to-end lifecycle of post and get operations.

Insertion of feedback (post requests)

A post request inserts feedback about the access to an item i by a user u. There is no
specific return value for this call, other than the HTTP header’s success or error code

Simon Da Silva — Univ. Bordeaux, LaBRI 92 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.4. PPROX PROTOCOL DESIGN

IA

LRS

UA

user-side library
pkUA

skUA

pkIA

skIA

kUA

kIA

post(u, i)

post(enc(u, pkUA), enc(i, pkIA))

post(det enc(u, kUA), enc(i, pkIA))

post(det enc(u, kUA),det enc(i, kIA))

HTTP
200

user-side
untrusted cloud

unmodified website
or application

Figure 6.3: Lifecycle of a post request (insert feedback)

from the REST API. The end-to-end lifecycle of a post call is illustrated in Figure 6.3
and detailed below.

The user-side library first transforms the call post(u, i) by encrypting the two argu-
ments, yielding a new call

post(enc(u, pkUA), enc(i, pkIA))

that is sent to any of the enclave instances of the UA layer. This enclave decrypts u using
private key pkUA. It pseudonymizes plaintext u by deterministically encrypting it using
kUA. The resulting call

post(det_enc(u, kUA), enc(i, pkIA))

is forwarded to one of the IA enclave instances. This enclave is able to decrypt i using
private key skIA, and similarly pseudonymize the plaintext item identifier using key kIA.
The call containing the unlinkable information is finally forwarded to the LRS as

post(det_enc(u, kUA),det_enc(i, kIA))

Simon Da Silva — Univ. Bordeaux, LaBRI 93 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.4. PPROX PROTOCOL DESIGN

and the response traverses back the two layers.

Collection of recommendations (get requests)

A get request returns a set of recommended items (i1, . . . , in) tailored for a specific
user u. The LRS maintains information about previous feedbacks in its database using
pseudonymous item identifiers, which must be decrypted by the IA layer. This list must
not be visible by the UA layer, as enclaves in the UA layer have access to the user
identifier. The lifecycle of a get request is illustrated in Figure 6.4.

When intercepting a get request, the user-side library generates a temporary key ku
and encrypts it using pkIA. This key ku will be used by the IA layer to encrypt the list
of recommendations and hide it from the UA, and is therefore encrypted with the IA
public key pkIA. The user identifier is encrypted, as for a post request, using the UA
layer public key, yielding the call

get(enc(u, pkUA), enc(ku, pkIA)).

The UA enclave instance receiving this call pseudonymizes the user identifier as for a
post request and sends the call

get(det_enc(u, kUA), enc(ku, pkIA))

to the IA layer. The IA proxy that handles this call records the identity of the source
UA enclave, and sends the call get(det_enc(u, kUA)) to the LRS. The returned list

{det_enc(i1, kIA), . . . , (det_enc(in, kIA)}

contains pseudonymized item identifiers. These identifiers are decrypted to plaintext
item identifiers used by the application using kIA. The recommendations list is then re-
encrypted to hide it from the UA layer using the user key ku, yielding enc({i1, . . . , in}, ku).
The call traverses back the layers until the user-side library, which decrypts the list of
recommended item identifiers using ku and returns it in the clear, and transparently, to
the application.

Simon Da Silva — Univ. Bordeaux, LaBRI 94 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.4. PPROX PROTOCOL DESIGN

get(u)

LRS

UA
skUA kUA

user-side
untrusted cloud

unmodified website or
application

user-side library
pkUA pkIA kutmp

IA
skIA kIA kutmp

get(enc(u, pkUA), enc(ku, pkIA))

get(det enc(u, kUA))

get(det enc(u, kUA), enc(ku, pkIA))enc({i1, . . . , in}, ku)

{i1, . . . , in}

{det enc(i1, kIA), . . . ,

(det enc(in, kIA)}

Figure 6.4: Lifecycle of a get req. (collect recommendations)

6.4.3 Requests and response shuffling

The pseudonymization of user and item identifiers is necessary, but not sufficient, to
enable the property of User-Interest unlinkability. The adversary can observe, indeed,
all network communications: between the user and UA enclaves, between UA and IA
enclaves, and between IA enclaves and the LRS. By correlating in time these observations,
it can relate an input request (from the user to some UA enclave) to a pseudonymized
request from the IA layer to the LRS. This reveals the association between a specific
user IP address and a specific set of pseudonymized item identifiers. If, in addition, the
adversary was able to compromise one of the IA enclaves, it could learn the association
between this user IP address and the item identifiers in the clear.

We first ensure that the adversary cannot distinguish between encrypted messages
exchanged between the user-side library and the UA layer, and between the UA and IA
layers. The size of all encrypted messages is constant, by using fixed-size user and item
identifiers, and padding when necessary. The list of items returned by the LRS has a

Simon Da Silva — Univ. Bordeaux, LaBRI 95 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.5. SECURITY ANALYSIS

LRS

R RRequest Response

UA IA
1 2 3

1

2

3

2 3 1 2’ 3’ 1’

1’ 2’ 3’2 1 3

?

2 1 3

Figure 6.5: Shuffling disallows the adversary from determining which of S (here S = 3)
incoming requests to the UA layer corresponds to a specific request sent to the LRS. The
same strategy is applied to responses from the LRS.

maximal size (20 in our implementation) and we use padding to fill in missing entries.
The pseudo-items used for padding are automatically discarded by the user-side library.

We implement request shuffling to protect from network inference attacks, as illustrated
in Figure 6.5. Shuffling hides the direct mapping between an input request from the user
to the UA layer and the redirection of this request to the IA layer. Similarly, it hides the
correspondence between a response from the LRS to the IA layer, and the corresponding
redirection to the UA enclave holding the user’s connection. Both types of mappings are,
in fact, made indistinguishable from S − 1 other requests, S being the size of a shuffling
buffer used by the corresponding proxy (UA for requests, IA for responses). Incoming
requests are buffered until S requests are received, or until a timer expires, and then sent
in random order to the next stage.

Shuffling relies on the assumption that a sufficiently high amount of traffic is available
for each enclave, in order to fill in the shuffling buffer before the timer expires. It is
linked, therefore, with the ability to easily scale up or down each of the proxy layers,
by adding and removing enclaves dynamically and ensure dynamically that sufficient
redirection load applies to each of the enclaves. The size of the buffer S is a compromise
between the additional latency imposed on requests and responses and the power of the
attacker. This bears similarities with the principle of k-anonymity in privacy-preserving
databases [LDR05, Swe02].

6.5 Security analysis

We present in this section the security analysis of PProx. We first present an informal
proof of the User-Interest unlinkability property (§6.5.1), then analyze the impact of
shuffling (§6.5.2), and finally discuss limitations (§6.5.3).

Simon Da Silva — Univ. Bordeaux, LaBRI 96 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.5. SECURITY ANALYSIS

6.5.1 User-Interest Unlinkability

To break the unlinkability between a user u and an item i, the adversary must either
(1) leak information from the post(u, i[, p]) message sent by u; (2) get access to items
recommended by the LRS in response to a get(u) message, in which the item i appears
or (3) de-anonymize the database of the LRS. We consider the adversary defined in
Section 6.2. This adversary can observe network traffic, read data stored by the LRS
(e.g., by running an insider attack on the machines on which the LRS runs [DCG12]) but
can only break into one of the proxy service layers (i.e., obtain secrets from either a UA
or an IA enclave). As a reminder, the client is trusted, the adversary does not modify
the data stored in the LRS and cannot break cryptographic keys. To proceed in steps,
we consider the two layers of PProx separately.

Case 1: the adversary breaks a UA enclave. The adversary gains access to the
following secrets: the private key skUA used to decrypt the user identifier u contained in a
transformed post(u, i[, p]) message; and the permanent key kUA used to encrypt the same
user identifier u toward its storage by the LRS in pseudonymous form det_enc(u, kUA).
We consider in the following these three (not mutually exclusive) cases: (a) the adversary
intercepts the transformed post(u, i[, p]) message at a UA enclave; (b) the adversary
intercepts the response to the get(u) message containing i as a recommended item;
(c) the adversary gets access to the content of the LRS database.

Case 1.(a): the adversary intercepts a post request at a broken UA enclave. . Call
post(u, i[, p]) has been transformed at the user side to post(enc(u, pkUA), enc(i, pkIA)).
The adversary intercepts this message and knows the origin of the request. It can link the
IP address to u by decrypting enc(u, pkUA) using the stolen secret skUA. By accessing
the LRS database, it may link u with det_enc(i, kIA) as it knows kUA and can thus
decrypt det_enc(u, kUA). However, as long as it does not steal IA layer’s secrets, the
adversary cannot decrypt det_enc(i, kIA) and cannot, therefore, link u and i.

Case 1.(b): the adversary intercepts the response to a get request at a broken
UA enclave. . The adversary accesses a list of encrypted item identifiers containing
enc({i}, ku). It also knows the final destination, i.e., the IP address of user u. However,
it is not able to decrypt item identifiers as it does not have access to ku, only available at
the client and to the IA layer. Linking u and i would require, here again, to get secrets
from IA enclaves at the same time as from UA enclaves, contradicting our fault model.

Case 1.(c): the adversary breaks a UA enclave and also gets access to the content
of the LRS database. . In this case, the adversary can de-pseudonymize user identifiers

Simon Da Silva — Univ. Bordeaux, LaBRI 97 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.5. SECURITY ANALYSIS

using kUA, but it is not able to de-pseudonymize items as obtaining kIA would require
breaking into a second enclave in the IA layer.

Case 2: the adversary breaks an IA enclave. Breaking an IA enclave allows the
adversary to gain access to the following secrets: the private key skIA used to decrypt an
item identifier i contained in a transformed post(u, i[, p]) message; and the permanent
key kIA used to pseudonymize this item identifier i as det_enc(i, kIA) for use by the
LRS. As for Case 1, we consider the following three (not mutually exclusive) cases: (a) the
adversary intercepts the transformed post(u, i[, p]) message at an IA enclave; (b) the
adversary intercepts the response to a get request, containing i as a recommended item;
(c) the adversary gets access to the LRS database.

Case 2.(a): the adversary intercepts a post message at the broken IA enclave. .
The message available to the IA layer is the result of transformations by the user-side
library and by the UA layer, i.e., post(det_enc(u, kUA), enc(i, pkIA)). The adversary
can decrypt enc(i, pkIA) using the leaked secret skIA to obtain i. However, it cannot
know the origin of the request thanks to the shuffling of messages performed by the UA
layer. By observing the LRS, the adversary can further link i with det_enc(u, kUA),
having access to permanent key kIA. However, as long as it does not simultaneously break
one of the UA enclaves, the adversary cannot decrypt det_enc(u, kUA) and cannot,
therefore, link u and i.

Case 2.(b): the adversary intercepts the response to a get request at the broken
IA enclave. . The adversary accesses a list of encrypted item identifiers containing
det_enc(i, kIA). It can, therefore, decrypt i using the leaked secret kIA. However, thanks
to message shuffling, the adversary is not able to learn for which user (IP address) the
response is making it unable to link u and i.

Case 2.(c): the adversary breaks an IA enclave and also gets access to the content
of the LRS database. . The adversary does not have access to the permanent key kUA,
held by UA enclaves. It cannot, therefore, decrypt pseudonymous user identifiers in the
LRS databases, preserving unlinkability between u and i.

In summary, even if it breaks one of the UA enclaves or IA enclaves, an adversary
cannot break user-interest unlinkability despite getting privileged access to the cloud
infrastructure and despite actively observing network activity.

Simon Da Silva — Univ. Bordeaux, LaBRI 98 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.5. SECURITY ANALYSIS

6.5.2 Impact of Shuffling

We analyze the impact of shuffling as described in §6.4.3. UA proxy instances send
requests to the IA layer in randomized batches, on the way from the user to the LRS.
Each batch contains S or more requests (the latter case only decreases the power of the
adversary). From the LRS to the user, IA proxy instances do the same towards the UA
layer.

We first consider a single proxy instance per layer, and the user-to-LRS path. For a
given time window, let us denote the set of messages output by the UA layer as outUA,
and the set of messages output by the IA layer as outIA. Let us further assume that the
adversary is interested in linking an incoming client request R to the related message
R′ reaching the LRS. Packets are encrypted and of the same size and, therefore, all
outbound packets from the UA layer to the IA layer are equally likely to correspond to
R. The odd for the attacker to correctly “guess” the correct outbound packet given an
inbound packet from the client is 1

|outUA| = 1
S . Note that the same applies for responses

from the LRS going back towards users.

We now factor in horizontal scaling, i.e., a varying number of proxy instances in each
layer. On the way from the user to the LRS, the number of instances in the UA layer
does not impact unlinkability, as the adversary can observe the origin (IP address) of
requests to any of the instances. We denote as I the number of instances in the IA layer.
The horizontal scaling of I improves unlinkability: the probability to select the correct
outbound message R′ for an inbound message R becomes 1

|outUA|×I = 1
S×I . From the

LRS to the user, the number of IA layer instances has no impact, and the probability for
the attacker to rightly guess that a response from the LRS is for a specific IP is 1

S×U
where U is the number of UA layer instances.

6.5.3 Limitations

Assumption on traffic. The effectiveness of shuffling depends on our assumption that
there is sufficient traffic. In certain cases, e.g., for unpopular websites or for some given
periods of times (e.g., at night time), this assumption may not hold for a given application.
In this case, an adversary could break the unlinkability between a user and an item
if, and only if, it successfully steals secrets from the IA layer in addition to timing
network requests. Such an attack is difficult to orchestrate and may be of little interest for
low-traffic applications. Possible mitigation would be for the RaaS provider to leverage
multi-tenancy, i.e., use the same proxy layer for multiple applications, thereby increasing

Simon Da Silva — Univ. Bordeaux, LaBRI 99 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.6. INTEGRATION AND REPRODUCIBILITY

the minimum traffic. This comes, however, with increased risks in case an enclave is
broken, as secrets for multiple applications could be stolen at once.

Disabling item pseudonymization. In PProx, we send pseudonymous item identifiers
to the LRS by default. For a large fraction of recommendation algorithms, and in particular
those based on collaborative filtering, the use of pseudonymous items has no impact and is
recommended for increased privacy. For algorithms that would need item identifiers in the
clear, e.g., for recommendations based on the semantics of the items [LDGS11], it is easy
to disable the pseudonymization of items, by using i directly instead of det_enc(i, kIA)
for calls to the LRS. This would have, however, an impact on our provided security
properties. Accepting that items be sent in clear requires, indeed, to lower down our
assumed adversary to still preserve unlinkability between users and their interests. This
is an example of the privacy-utility tradeoff: disabling item pseudonymization means
unlinkability is preserved if and only if UA enclaves are not broken.

6.6 Integration and Reproducibility

We integrate PProx with a representative LRS, the Universal Recommender [Actb]
(UR), initially developed for Apache Mahout and the prediction.io frameworks and
integrated with Harness [Acta], an open-source machine learning platform. UR implements
collaborative filtering based on the Correlated Cross-Occurrence (CCO) algorithm [Fer17].
CCO aggregates indicators (in our setup, feedback on the access to items) and builds
profiles allowing to predict users’ interests based on the history of other profiles with
high similarity.

Harness uses several modules to support the UR model construction and the generation
of predictions. A MongoDB database persists engine-related data and inputs pending
processing (i.e., feedback received via post requests). UR uses an elasticsearch instance
to persist the recommendation mode, and periodic runs of Apache Spark for rebuilding this
model including new inputs fetched from MongoDB. Harness frontend modules provide a
REST API allowing to query the model and return JSON-encoded recommendations.
These frontend modules handle the most significant part of the load. All modules can
scale horizontally by adding new instances. We further detail the performance and scaling
of Harness supporting UR in our evaluation (§6.8.2).

Simon Da Silva — Univ. Bordeaux, LaBRI 100 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.7. IMPLEMENTATION

6.6.1 Workload injection and stub LRS

We built an HTTP load injector based on the high-performance loadtest library [Fer19]
for node.js. The injector issues REST API calls and times their execution. When testing
PProx in isolation from Harness, we use a stub service with the nginx high-performance
HTTP server to serve a static payload of the same size as Harness recommendations lists.

6.6.2 Experimental reproducibility

We target the experimental reproducibility of our results through the use of an “every-
thing-as-code” approach. All components (PProx, Harness, our workload injector, and
nginx) are deployed as Docker containers in a cluster managed with MaaS [Can] and
running Kubernetes [Bre15] v1.15, deployed using Kubespray v2.12.3. Since support
for Intel SGX is yet to be integrated into the main version of Kubernetes we used the
Kubernetes Device Plugin for Intel SGX developed by Vaucher et al. [VPF+18]. The
deployment and configuration of all containers composing the system rely on charts for
the Helm [Clo] package manager. We implement horizontal scaling of PProx proxy layers
and of all Harness modules using Kubernetes integrated load balancing mechanisms
(kube-proxy module). We collect logs in a systematic fashion using fluentd [Flu] and
store them in a MongoDB instance separate from the one used by Harness. Experiment are
described by Jupyter [Pro] notebooks in order to systematize deployment, orchestration
and analysis of experimental results, and allow other researchers to reproduce them.

6.7 Implementation

We focus in this section the implementation of the privacy-preserving proxy service
running in SGX enclaves. The implementation of the user-side library in Javascript and
its integration into a webpage is straightforward, therefore we do not detail it in this
section.

The proxy service must be able to support numerous concurrent requests. This is
particularly challenging as (1) part of the proxy logics resides in SGX enclaves and
(2) this logic must perform CPU-intensive cryptographic computations. In addition to
a high level of concurrency, the proxy design must target fairness in the processing of
requests, in order to control service time tail latency. This requires ensuring that no
request gets delayed arbitrarily more than the delay that shuffling already introduces.

Simon Da Silva — Univ. Bordeaux, LaBRI 101 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.7. IMPLEMENTATION

Scheduling the processing of requests should not introduce, on the other hand, significant
synchronization overheads.

The proxy service is implemented in C++ using the Intel SGX SDK [Int20b]. Cryp-
tographic operations use Intel’s OpenSSL SGX port [Int20a], using RSA for asymmetric
encryption and AES-CTR mode for symmetric encryption. We use a constant initial-
ization vector (IV) for deterministic encryption (user and item pseudonymization). For
regular encryption of data to and from the client, we use a randomly-generated IV that is
stored temporarily in the enclave memory. Data from/to the client and from/to the LRS
is structured in JSON, and the encrypted content is handled and stored in the base64

format. The implementation is split in two parts, server and data processing, which we
detail below.

Server The server runs outside of SGX enclaves and is identical for the UA and IA
layers. It (i) handles connection requests and schedules their processing, implementing
shuffling, and (ii) is in charge of receiving and sending packets. The server is the only
component that performs system calls with the local OS: data processing enclaves only
process data in memory that has been prepared by the server.

We adopt an event-driven approach to the scheduling and handling of incoming
requests. The server runs as a single thread listening to incoming connection requests
notification using the epoll() data structure and associated system calls of the Linux
kernel. Incoming connections’ file descriptors are pushed into a queue, to be consumed in
order3 by the pool of data processing threads. We use a lock-free, scalable concurrent
queue implementation by Desrochers [Des20].

The server thread maintains table T, the routing table for pending requests, as a map
from outbound file descriptors to inbound file descriptors (sockets). When the epoll()

call raises an event for a file descriptor f , the server thread can lookup T to establish the
corresponding return path.

Table T is also used for implementing request shuffling. When the number of elements
in T reaches S or when the timer expires, the server enqueues all pending requests in a
randomized order into the shared concurrent queue. Note that the size of T should be

3The order of notifications across several epoll_wait() system calls follows the real-time order of
requests reception, except for requests received between calls that may be ordered arbitrarily. The number
of such requests when the system has not reached saturation is limited and the processing of requests is,
in practice, very close to the order of their reception.

Simon Da Silva — Univ. Bordeaux, LaBRI 102 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

larger than S in order to avoid dropping incoming requests between the reaching of the
threshold and the processing of the requests. We stress that the server only processes
encrypted content without the possibility of accessing it in the clear: clients’ identities,
keys, IVs, and data are stored inside the enclave memory.

Data processing The data processing part of the proxy is supported by a pool of
thread running in the SGX enclave4. Each data processing thread dequeues work from
the tail of the shared concurrent queue. For each processed packet, a thread (i) parses it
(HTTP headers and JSON payloads); (ii) performs cryptographic operations as detailed
in Section 6.4 and (iii) forges a new packet to forward to the other proxy layer, to the
LRS, or back to the client. We implemented a lightweight JSON parser inside the enclave,
able to retrieve and/or update JSON fields in place and with minimal copy overhead.
An in-memory key-value store in the EPC (Enclave Page Cache) holds the information
necessary for handling requests responses on their way back from the LRS.

6.8 Evaluation

We evaluate PProx using the reproducible experimental setup presented in the previous
section. All our deployments are performed on a cluster of 27 nodes. Each node is an
Intel Next Unit of Computing (NUC) Kit with a 2-core 3.50 GHz Intel i7 processor and
32 GB of RAM, recommended by Intel to experiment with SGX.

Our evaluation aims at answering the following research questions: (1) What is the
impact of each of the privacy-enabling features of PProx (encryption, use of SGX, and
request shuffling) on service latency? (2) How does the performance of Harness equipped
with PProx compare to an unprotected deployment? (3) Is PProx able to scale to handle
larger Harness deployments, and what are the comparative costs of the two sub-systems?5

4We use a thread pool size equal to the number of cores in our evaluation with a small number of
cores, but deployments on a large multicore CPU could use one less thread in the pool than the number
of cores and pin the server thread to the remaining core to reduce scheduling overheads.

5We choose not to evaluate PProx against other privacy-preserving approaches. Indeed, cryptography-
based solutions have a latency above 10 seconds on a high-end server CPU, while PProx has a worst-case
latency under one second using commodity hardware. Besides, differentially private and decentralized
solutions both require complex client-side code, and degrade accuracy due to added noise. These
performance differences along with the code unavailability lead us to favor a thorough evaluation of
PProx.

Simon Da Silva — Univ. Bordeaux, LaBRI 103 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

We answer question (1) through a series of micro-benchmarks with PProx connected
to a stub server. We answer questions (2) and (3) through macro-benchmarks of PProx

connected to Harness, with increasingly large deployments.

Metrics and workload. Our primary evaluation metric is the distribution of round-trip
service latencies, as measured by workload injector instance(s). When measuring the
performance of a given configuration with an increasing number of requests per second
(RPS), we present results up to the last value measured before reaching saturation
(i.e., where latencies increase drastically due to congestion). This allows measuring the
supported workload under acceptable conditions rather than the peak throughput, which
comes at the price of very high latencies and is, therefore, of little interest in our context.
We run each experiment (i.e., for each configuration and RPS pair) 6 times and report
the aggregated distribution of round-trip service latencies.

The target Service-Level Objective (SLO) for round-trip service latency depends on
the nature of the application or website using RaaS services. As a rule of thumb, we
consider in this evaluation that a median latency below 300 ms (not accounting the
latency to and from the data center hosting the RaaS services) and never exceeding twice
that value should comply with typical SLOs for online services [Sha12]. For instance,
Google representatives reported back in 2006 that search results displayed in more than
500 ms resulted in drops of 20% in traffic [Goo06].

We use the MovieLens dataset ml-20m [Gro, HK15b] as our experimental workload.
This dataset is classically used for the evaluation of recommender systems. It contains
feedbacks (ratings and free-text reviews) from users for movies on the collaborative
MovieLens website. We use the years 2014 and 2015 as a source of feedback, corresponding
to 562,888 for 17,141 different movies made by 7,288 different users. In all of our
experiments, we proceed in two phases: we inject feedback for one minute and trigger the
training phase of UR (using Apache Spark) in a first phase, and collect recommendations
for a duration of 5 minutes in a second phase. Note that: (1) We do not report on the
quality of recommendations. This is an orthogonal concern for PProx that depends on
the LRS. Recommendations are strictly the same as when using UR in Harness directly.
(2) We focus on reporting the performance of get requests, as these are the more time-
sensitive and costlier in terms of encryption and payload.6 (3) We trim the first and last

6We evaluated the costs of post requests and these systematically follow the same trends as for get
requests, with only marginally lower latencies.

Simon Da Silva — Univ. Bordeaux, LaBRI 104 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

15 seconds of each measurement period to avoid perturbations linked with the warm-up
and slow-down of injection.

§ Fig. Enc. SGX S UA IA RPS

m1 6.8.1 6.6 7 7 7 1 1 250
m2 6.8.1 6.6 3 7 7 1 1 250
m3 6.8.1 6.6, 6.7 3 3 7 1 1 250
m4 6.8.1 6.6 H 3 7 1 1 250
m5 6.8.1 6.7 3 3 5 1 1 250
m6 6.8.1, 6.8.1 6.7, 6.8 3 3 10 1 1 250
m7 6.8.1 6.8 3 3 10 2 2 500
m8 6.8.1 6.8 3 3 10 3 3 750
m9 6.8.1 6.8 3 3 10 4 4 1000

Table 6.2: Micro-benchmark configurations.
“§” and “Fig.” resp. denote the section(s) and figure(s) in which the configuration is used. “Enc.” stands
for the use of encryption, with H denoting that item pseudonymization is disabled. “S” is the shuffling
parameter, “UA” and “IA” the number of nodes in each proxy service layer, and “RPS” the maximal

amount of Requests Per Second supported by this configuration without throttling.

6.8.1 Micro-benchmarks

Our micro-benchmarks connect the PProx proxy service to the nginx stub returning
static recommendations. We consider the configurations listed in Table 6.2, with various
configurations of PProx allowing to analyze the contribution of each security-enabling
feature (use of encryption, use of SGX enclaves, use of requests shuffling) in configurations
m1-m6 and the scalability of the proxy service in configurations m6-m9. We use one (for
m1-7) or two (for m8-9) injector nodes and increments of 50 RPS (for m1-6, using a single
instance in each proxy layer) or 250 RPS (for m6-m9, when analyzing scalability). The
single nginx server is not a bottleneck: direct requests from the injector(s) to the stub
have a median latency of 1 to 2 ms and scale well over 1,000 RPS.

Dissecting the impact of privacy features

Figure 6.6 presents the distribution of latencies when adding each of the security-enabling
features of PProx one by one, except shuffling that we evaluate separately. We emphasize
that reported values are the requests round-trip time, i.e., requests traverse the UA and
IA layer twice, once in each direction. We can observe that the added cost of encryption is
slightly higher than the cost of using SGX enclaves. The use of SGX enclaves introduces 2
to 5 ms additional median or maximal latency, about half as much as adding encryption.

Simon Da Silva — Univ. Bordeaux, LaBRI 105 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

 0

 10

 20

 30

 40

 50

50 100 150 200 250

m
1

m
1

m
1

m
1

m
1

m
2

m
2

m
2

m
2

m
2

m
3

m
3

m
3

m
3

m
3

m
4

m
4

m
4

m
4

m
4

R
o

u
n

d
−

tr
ip

 t
im

e
 (

m
s
)

Requests per second

Figure 6.6: Performance of the proxy service with no security-enabling feature (m1),
when adding encryption (m2), and when adding the use of SGX enclaves (m3); Impact of
disabling item pseudonymization (m4).

We also disable in configuration m4 the use of pseudonymization for item identifiers,
as discussed in §6.5.3. The impact is negligible, confirming that using pseudonymous
item identifiers can remain the default unless explicitly required by the recommendation
algorithm.

Figure 6.7 compares the performance of a configuration with no shuffling (m3, same
as in Figure 6.6) with configurations using shuffling. The impact of shuffling depends,
unsurprisingly, on the number of requests received per second, impacting the time required
to fill the buffer and send requests in a random order to the next stage (in both directions,
from the UA to the IA, and from the IA to the UA). With a value of S = 5 and
low throughput of 50 RPS, latency remains within usable boundaries for building an
interactive service (at most a few hundred milliseconds) but can be too high for most
SLOs when S = 10. With a larger number of requests per second, median round-trip
service latency remains well below 200 ms in both cases. This suggests that the PProx

proxy should not be over-provisioned (i.e., using too many proxy instances for a given
workload) to avoid the risk of high buffering latency. The value of S and the number

Simon Da Silva — Univ. Bordeaux, LaBRI 106 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

 0

 100

 200

 300

 400

 500

50 100 150 200 250

m
3

m
3

m
3

m
3

m
3

m
5

m
5

m
5

m
5

m
5

m
6

m
6

m
6

m
6

m
6

R
o

u
n

d
−

tr
ip

 t
im

e
 (

m
s
)

Requests per second

Figure 6.7: Impact of shuffling: reference configuration with no shuffling (m3), and with
S = 5 (m5) and S = 10 (m6).

of proxy instances could be tuned elastically at run time to achieve automatically a
compromise between latency and privacy, an optimization that we leave to future work.

PProx proxy service scaling

We finally evaluate the ability of the PProx proxy to scale and handle higher throughputs,
starting from the complete configuration m6 with all features and S = 10 from our
previous experiment and using only one instance per proxy service layer. We report the
results in Figure 6.8. Note that starting from this figure and for the rest of this section
we switch the ordinates to a logarithmic scale for readability.

Using more proxy instances in each layer allows supporting increasing amounts of
requests, i.e., each additional pair of UA and IA proxy instances enables an additional
250 RPS without reaching saturation. With 4 instances of each proxy, PProx can offer
round-trip latencies that are consistently under 200 ms for 1.000 RPS7. We also confirm

7We emphasize that the NUCs used in our evaluation only feature two cores and mobile-grade CPUs;
we expect the supported throughput to also scale vertically using server-grades CPUs with support for
SGX.

Simon Da Silva — Univ. Bordeaux, LaBRI 107 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

 10

 100

 1000

50 250 500 750 1000

m
6

m
6

m
7

m
7

m
7

m
8

m
8

m
8

m
8

m
9

m
9

m
9

m
9

m
9

R
o

u
n

d
−

tr
ip

 t
im

e
 (

m
s
)

Requests per second

Figure 6.8: Scalability of PProx using 1 (m6) to 4 (m9) instances in each proxy layer (2
to 8 nodes), using all privacy-enabling features and S = 10.

the observation made in the previous subsection: when using an over-provisioned system
(e.g., m7-9 with 50 RPS or m9 with 250 RPS) latencies due to request shuffling may
become too high to comply with the recommendation service SLO.

6.8.2 Macro-benchmarks: PProx with the Harness LRS

We deploy PProx and Harness using the configurations listed by Table 6.3. Configurations
b1-4 are for Harness deployed alone. They serve as a baseline. We vary the number of
Harness front-end services from 3 to 12, and use 4 nodes for support services (three for
Elasticsearch, one for MongoDB and Apache Spark). The front-end service is the main
source of load for serving requests and these 4 support nodes are necessary and sufficient
in all configurations. This translates to Harness configurations of 7 to 16 nodes.

Figure 6.9 presents Harness baseline performance. As previously, we present round-
trip service latency for each configuration before reaching saturation. For instance,
configuration b3 with 13 nodes can serve 750 RPS with sub-second latency but saturates
with 1.000 RPS. The service time latencies of Harness are representative of the type
of algorithm used, that require non-trivial reads to a shared database and complex

Simon Da Silva — Univ. Bordeaux, LaBRI 108 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

Fig. Enc. SGX S UA IA LRS RPS

–baseline configurations: only LRS–
b1 6.9 7 7 7 7 7 7: 3+4 250
b2 6.9 7 7 7 7 7 10: 6+4 500
b3 6.9 7 7 7 7 7 13: 9+4 750
b4 6.9 7 7 7 7 7 16: 12+4 1000

–full configurations: proxy service and LRS–
f1 6.10 3 3 10 1 1 7: 3+4 250
f2 6.10 3 3 10 2 2 10: 6+4 500
f3 6.10 3 3 10 3 3 13: 9+4 750
f4 6.10 3 3 10 4 4 16: 12+4 1000

Table 6.3: Macro-benchmark experimental configurations.
“Fig.” denotes the figure using the configuration. “Enc.” stands for the use of encryption, S is the shuffling
parameter, UA, IA and LRS are the number of nodes allocated to the proxy service layers and the LRS
(front-end + support nodes). “RPS” is the maximal throughput achievable with this configuration

without throttling.

 1

 10

 100

 1000

50 250 500 750 1000

b
1

b
1

b
2

b
2

b
2

b
3

b
3

b
3

b
3

b
4

b
4

b
4

b
4

b
4

R
o

u
n

d
−

tr
ip

 t
im

e
 (

m
s
)

Requests per second

Figure 6.9: Baseline performance of the Harness LRS

(pre-built) user models to generate recommendations. These service times are below
100 ms in all configurations for low to moderate throughput (up to 500 RPS) and the
spread of the distribution becomes wider for higher throughput, with peak service times
around 300 ms for the largest configuration b4 under 1.000 RPS.

Simon Da Silva — Univ. Bordeaux, LaBRI 109 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.8. EVALUATION

 10

 100

 1000

50 250 500 750 1000

f
1

f
1

f
2

f
2

f
2

f
3

f
3

f
3 f
3

f
4

f
4

f
4 f
4

f
4

R
o

u
n

d
−

tr
ip

 t
im

e
 (

m
s
)

Requests per second

Figure 6.10: Performance of Harness when used in combination with PProx with increas-
ingly large deployments

Figure 6.10 finally presents the performance of the complete integrated system, with
PProx using 2 to 8 nodes and Harness using 7 to 16 nodes. These configurations f1-4

correspond to the combination of previously-detailed configurations m6-9 for PProx and
b1-4 for Harness, supporting the same multiple of 250 RPS as maximal throughput
prior to saturation. These configurations include all privacy-enabling features of PProx

and use S = 10. The infrastructure cost of PProx ranges, therefore, from 30% (f1) to
50% (f4) additional nodes compared to privacy-unprotected Harness. Latencies are, as
expected, the sum of latencies observed in Figures 6.8 and 6.9. With 50 RPS the impact
of request shuffling is important, in particular for configurations f2-4. This is intrinsic
to the need to prevent network observation attacks, as previously observed, and a lower
value of S would shift the privacy-performance tradeoff towards the latter. For workloads
of 250 to 750 RPS, however, overall latencies are systematically below 300 ms, with a
median between 100 and 200 ms. With 1,000 RPS the max service time increases to
450 ms but median latency remains below 200 ms. We can contrast these latency results
with the experimental evaluation of privacy-preserving recommendation algorithms based
on encrypted processing [BVK+12, BVKD13, WTAR19] yielding latencies of several
seconds.

Simon Da Silva — Univ. Bordeaux, LaBRI 110 High-QoE Privacy-Preserving Video Streaming

CHAPTER 6. PPROX 6.9. CONCLUSION

6.9 Conclusion

Recommender systems usually complement streaming solutions to retain users on their
website or application. Yet, they pose a serious threat to privacy, as user profiles are
established based on the watching history. A few privacy-preserving recommender sys-
tems exist. However, all of them use specific recommendation algorithms, require to
install a heavy code layer at the client side, and either provide a low performance with
several seconds delay, or low accuracy because of added noise. To tackle these issues,
we presented PProx, a system for efficient, reliable and scalable privacy preservation
fitting the requirements of RaaS. PProx contributes a privacy-preserving proxy service
that prevents the disclosure of the link between individuals and their interests. The
security guarantees of PProx hold even in the presence of a powerful attacker able to use
recently-documented side-channel attacks on SGX enclaves, and observing all network
traffic in the cloud. In contrast with previous work, privacy-preservation with PProx is
not specific to a recommendation algorithm and does not require complex deployment of
code or state at the users’ side.

We integrated PProx with the Harness universal recommendation engine and evalu-
ated it on a 27-node cluster. Our results indicate its ability to withstand a high number
of requests with low end-to-end latency, scaling up to match the workload of recommen-
dations. The typical latency overhead is below 100ms (compared to several seconds for
similar systems), and PProx only requires 30% to 50% additional nodes to provide the
recommendation service.

One can explore the use of PrivaTube and PProx foundations (i.e., the use of HTTP
proxies in TEEs) for privacy preservation in generic online services accessed through
REST APIs.

Simon Da Silva — Univ. Bordeaux, LaBRI 111 High-QoE Privacy-Preserving Video Streaming

Summary

PProx does not impact recommendations accuracy, supports arbitrary recommendation
algorithms, and has minimal deployment requirements. Its design leverages an elastically
scalable network of proxies to transparently pseudonymize users over a fleet of Intel
SGX-enabled machines. PProx privacy guarantees are robust to even the corruption of
one of the SGX enclaves.

Simon Da Silva — Univ. Bordeaux, LaBRI 112 High-QoE Privacy-Preserving Video Streaming

Chapter 7

Conclusion and further directions

I have not failed. I’ve just found 10,000 ways that won’t work.

— Thomas A. Edison

This chapter concludes the thesis, summarizes the contributions and provides insight
on possible future research directions.

7.1 Contributions summary

Delivering video content with a high and fairly shared Quality of Experience is a
challenging task in view of the drastic video traffic increase forecasts, as live video
traffic will grow 15-fold by 2022. Currently, Content Delivery Networks provide numerous
servers hosting replicas of the video content and consuming clients are re-directed to
the closest one. Then, the video content is streamed using HTTP Adaptive Streaming
solutions. However, servers and network links often become overloaded during major
events, and users may experience a poor or unfairly distributed QoE, unless more
servers are provisioned. Muslin [DSBQL+19, DSBQL+18a, DSBQL+18b] is a solution
supporting a high, fairly shared end-users QoE for live streaming, whileminimizing
the required content delivery platform scale. Muslin leverages on MS-Stream,
a content delivery solution which aggregates video content from multiple servers to offer
a high QoE for its users. Muslin dynamically provisions servers, replicates content into
them, and advertises them to clients based on real-time delivery conditions. We have
used Muslin to replay a one-day video-games event, with hundreds of clients and several
testbeds. Our results show that our approach outperforms traditional content delivery

Simon Da Silva — Univ. Bordeaux, LaBRI 113 High-QoE Privacy-Preserving Video Streaming

CHAPTER 7. CONCLUSION 7.1. CONTRIBUTIONS SUMMARY

schemes by increasing the fairness and QoE at the user side with a smaller infrastructure
scale.

Efficient and scalable video streaming requires a large video delivery platform such as
an edge-assisted collaborative CDN. However, access histories can reveal critical personal
information, and centralized video streaming solutions are notorious for exploiting personal
data. Hiding the interests of users from servers and edge-assisting devices is necessary for
a new generation of privacy-preserving streaming services. PrivaTube [DSBMC+19]
is a scalable and cost-effective solution. PrivaTube aggregates video content from
multiple servers and edge peers to offer a high QoE for its users. It enables privacy
preservation at all levels of the content distribution process. It leverages TEEs at
servers and clients, and obfuscates access patterns using fake requests that reduce the
risk of personal information leaks. Fake requests are further used to implement proactive
provisioning and improve QoE. Our evaluation of a complete prototype shows that
PrivaTube reduces the load on servers and increases QoE while providing strong privacy
guarantees.

Recommendation-as-a-Service enables developers to integrate personalized navigation
to their websites or applications without having to master the complexity of tuning and
deploying a dedicated recommendation system. All major video streaming services include
a recommendation functionality. However, the generation of recommendations relies on the
collection of navigation history and feedback from users. This leads to legitimate concerns
regarding the privacy impact of outsourcing such sensitive data. PProx complements video
streaming systems by providing pseudonymous and private recommendations.
PProx does not impact recommendations accuracy, supports arbitrary recommendation
algorithms, and has minimal deployment requirements and performance impact.
Its design leverages a network of proxies, running on the same untrusted cloud as a
legacy recommendation engine, to transparently pseudonymize users, items, as well as
to hide links between the two. These proxies elastically scale over a fleet of Intel SGX-
enabled machines. PProx privacy guarantees are robust to even the corruption of one of
the SGX enclaves. We integrated PProx with the Harness recommendation engine and
evaluated it on a 27-node cluster. Our results indicate its ability to withstand a high
number of requests with low end-to-end latency, scaling up to match the workload of
recommendations.

Simon Da Silva — Univ. Bordeaux, LaBRI 114 High-QoE Privacy-Preserving Video Streaming

CHAPTER 7. CONCLUSION 7.2. FURTHER RESEARCH DIRECTIONS

7.2 Further research directions

We introduce several research directions for each contribution.

Muslin

As Muslin evolved into PrivaTube, the most obvious improvements and research
prospects were included in the latter. Still, a few remaining research directions were
identified.

Cost model One could consider a short-term cost model improvement to Muslin. Its
cost model could take into account scaling and network costs to further improve benefits
towards infrastructure cost and cloud computing capabilities. For instance, public cloud
network, storage and computing costs could be retrieved by the provisioning module to
dynamically select different cloud providers depending on the region and availability.

Peer selection in P2P and edge-assisted systems A long-term generalization of
Muslin algorithms and principles could be further leveraged for peer selection in P2P
and edge-assisted streaming systems. Indeed, BitTorrent clients (and similar solutions)
choose peers either at random or on past upload capabilities, which do not reflect current
network and delivery conditions. These systems would thus greatly benefit from smarter
source selection mechanisms.

PrivaTube

As PrivaTube is the first video streaming system to provide strong privacy guarantees
with high QoE, many aspects are unexplored and could benefit from further research.

Fake requests generation Possible mid-term future work revolves around the in-
vestigation of more sophisticated fake requests generation. For instance, content access
patterns over time could be taken into consideration (e.g., sequential series episodes).
Other ways include user profiles computation for more realistic fake requests, or even
federated learning.

Proxy-less CDN implementation Another mid-term research direction is the gener-
ation of fake requests for high QoE and best-effort privacy from the client in a legacy CDN

Simon Da Silva — Univ. Bordeaux, LaBRI 115 High-QoE Privacy-Preserving Video Streaming

CHAPTER 7. CONCLUSION 7.2. FURTHER RESEARCH DIRECTIONS

environment. These requests could adapt according to bandwidth and buffer, similarly
to DASH adaptations techniques. Fake requests rate δ could be a parameter (e.g., best
effort, 50%, 25%, etc.). It could rely on a trusted manifest server to register contents
popularity and reply to clients requests with samePop contents. These improvements
would only rely on a small JavaScript code overlay on top of current off-the-shelf video
players.

QoE and reliability in 5G networks 5G networks are being deployed globally and
raise several issues regarding video streaming. Future indoor 5G and wireless networks
architectures will include heterogeneous technologies. There is currently no reliable
solution enabling high-QoE video streaming over multiple heterogeneous paths. This issue
has been addressed by a fellow PhD candidate. MSS/RRLH [LN20], a system to reliably
deliver high quality and low delay videos, was proposed to tackle this challenge. It relies
on edge computing resources and efficient multiple-path quality selection algorithms.

Incentive and rewarding through blockchain One of the main collaborative sys-
tems issues is users’ contribution. In PrivaTube, the HTTP proxy answers to content
requests within the enclave and thus enforces upload from the client. However, users could
still voluntarily delete their local filesystem contents or disable their internet connection
to prevent network traffic. Indeed, without incentive to contribute, many users will
selfishly consume resources (e.g., content or bandwidth) without contributing back to the
system. To solve this issue, a few free-riding control mechanisms were designed. Some
systems reward upload capacity or storage in P2P-VOD systems [WLM11, WML13].
But most mechanisms implement either direct [SRR09] or indirect [LGC+09] reciprocity
schemes. For instance, SVC-TChain [RJWS+17] incentivizes good behavior in layered
P2P video streaming through a triangular reciprocity scheme, called TChain [SJWH+17].
However, in PrivaTube, clients download video segments from other peers to obtain QoE
improvements in addition to streaming from the public servers, and do not exclusively
obtain data from peers. A reciprocity-based incentive mechanism cannot be applied
to PrivaTube. There were attempts to reward users who share their resources using
blockchain or cryptocurrencies. A distributed P2P system was theorized by Y. He et
al [HLC+18], in which contributing users are automatically rewarded with any legacy
cryptocurrency. Besides, social networks such as Sphere [Sph17], Steemit [Ste18] and
Socialx [Soc18] use distributed ledgers and blockchains to reward contributing users
with cryptocurrencies, built on top of Ethereum. Some similar implementations were
made by Filecoin [Fil18] and Storj [Sto18], where users can trade disk storage against

Simon Da Silva — Univ. Bordeaux, LaBRI 116 High-QoE Privacy-Preserving Video Streaming

CHAPTER 7. CONCLUSION 7.3. CLOSING REMARKS

tokens as a distributed alternative to cloud storage. To do so, they both built custom
blockchain mechanisms and designed cryptocurrencies to ensure proof of retrievability
and availability properties. The use of a blockchain to track users contributions (i.e.,
upload) to the system would benefit PrivaTube, as it enables users to maintain their
upload/download ratio over several devices and adds accountability.

PProx

Trusted Execution Environments are still being developed and integrated into commodity
hardware. Their ubiquity will enable many new services to protect users’ privacy and
security without compromising on performance.

Automation of data pseudonymization A long-term improvement would be to use
PProx HTTP proxies to automate data pseudonymization in systems handling sensitive
user data in untrusted clouds. Several generic layers could handle the encryption and
pseudonymization of data in a way that compromising one would still preserve overall
unlinkability. It would require analyzing the data sent and received, and provisioning as
many layers as data fields, each layer being in charge of a field.

Generic REST APIs Another long-term research project could be to leverage PProx

foundations (i.e., the use of HTTP proxies in TEEs) for privacy preservation in generic
online services accessed through REST APIs. The use of efficient shuffling as in PProx

provides differential privacy guarantees along with a low latency, unlike Tor and similar
systems.

7.3 Closing remarks

These further research directions led to recruit an intern and a PhD candidate. They will
both aim at expanding PrivaTube capabilities and PProx principles.

Video streaming is evolving quickly and faces many challenges and opportunities. We
believe that our work proves strong privacy and security guarantees no longer come with
low performance and QoE. Many efficient and pragmatic solutions could therefore be
developed in the industry from these foundations.

We hope generalizing Muslin, PrivaTube and PProx will enable a new generation of
High-QoE Privacy-Preserving Video Streaming services with great performance.

Simon Da Silva — Univ. Bordeaux, LaBRI 117 High-QoE Privacy-Preserving Video Streaming

Bibliography

[ABC14] Ioannis Arapakis, Xiao Bai, and B Barla Cambazoglu. Impact of response
latency on user behavior in web search. In 37th international ACM SIGIR
conference on Research & development in information retrieval, 2014.

[Acta] ActionML. Harness: microservice based machine learning server.

[Actb] ActionML. The Universal Recommender.

[Ado18] Adobe. Adobe HTTP dynamic streaming (HDS). https://www.adobe.

com/products/hds-dynamic-streaming.html, 2018.

[Ado20] Adobe. Real-time messaging protocol (RTMP) specification. Technical
report, Adobe, 2020.

[AGH+12] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Matteo Varvello, Volker
Hilt, Moritz Steiner, and Zhi-Li Zhang. Unreeling netflix: Understanding
and improving multi-CDN movie delivery. In 2012 Proceedings IEEE
INFOCOM, pages 1620–1628. IEEE, 2012.

[AJCZ12] Vijay Kumar Adhikari, Sourabh Jain, Yingying Chen, and Zhi-Li Zhang.
Vivisecting youtube: An active measurement study. In 2012 Proceedings
IEEE INFOCOM, pages 2521–2525. IEEE, 2012.

[AK06] Naveen Farag Awad and Mayuram S Krishnan. The personalization
privacy paradox: an empirical evaluation of information transparency and
the willingness to be profiled online for personalization. MIS quarterly,
pages 13–28, 2006.

[App18] Apple. HTTP live streaming (HLS). https://developer.apple.com/

streaming/, 2018.

Simon Da Silva — Univ. Bordeaux, LaBRI 119 High-QoE Privacy-Preserving Video Streaming

https://www.adobe.com/products/hds-dynamic-streaming.html
https://www.adobe.com/products/hds-dynamic-streaming.html
https://developer.apple.com/streaming/
https://developer.apple.com/streaming/

BIBLIOGRAPHY

[ARM] ARM. Trustzone: system-wide hardware isolation for trusted software.
https://developer.arm.com/ip-products/security-ip/trustzone.

[ATG+16] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, An-
dre Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan
O’Keeffe, Mark L Stillwell, et al. SCONE: Secure linux containers with
Intel SGX. In 12th USENIX Symposium on Operating Systems Design
and Implementation, OSDI, 2016.

[BAGV18] Alessio Botta, Aniello Avallone, Mauro Garofalo, and Giorgio Ventre. A
user-oriented performance comparison of video hosting services. Computer
Communications, 116:118–131, 2018.

[BBC12] Jordi Mongay Batalla, Andrzej Bęben, and Yiping Chen. Optimization
of the decision process in network and server-aware algorithms. In 2012
15th International Telecommunications Network Strategy and Planning
Symposium (NETWORKS), pages 1–6. IEEE, 2012.

[BCE+07] Mira Belenkiy, Melissa Chase, C Chris Erway, John Jannotti, Alptekin
Küpçü, Anna Lysyanskaya, and Eric Rachlin. Making P2P accountable
without losing privacy. In Proceedings of the 2007 ACM workshop on
Privacy in electronic society, pages 31–40, 2007.

[BCT+18] Timm Böttger, Felix Cuadrado, Gareth Tyson, Ignacio Castro, and Steve
Uhlig. Open connect everywhere: A glimpse at the internet ecosystem
through the lens of the netflix CDN. ACM SIGCOMM Computer Com-
munication Review, 48(1):28–34, 2018.

[BEK16] Yahya Benkaouz, Mohammed Erradi, and Anne-Marie Kermarrec. Nearest
neighbors graph construction: Peer sampling to the rescue. In Interna-
tional Conference on Networked Systems, NETYS. Springer, 2016.

[BFG+16] Antoine Boutet, Davide Frey, Rachid Guerraoui, Arnaud Jégou, and Anne-
Marie Kermarrec. Privacy-preserving distributed collaborative filtering.
Computing, 98(8):827–846, 2016.

[BGO19] Joeran Beel, Alan Griffin, and Conor O’Shea. Darwin & Goliath: A
white-label recommender-system as-a-service with automated algorithm-
selection. In Demonstration at the 13th ACM Conference on Recommender
Systems, RecSys, 2019.

Simon Da Silva — Univ. Bordeaux, LaBRI 120 High-QoE Privacy-Preserving Video Streaming

https://developer.arm.com/ip-products/security-ip/trustzone

BIBLIOGRAPHY

[BMD+17] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:SGX
cache attacks are practical. In 11th USENIX Workshop on Offensive
Technologies (WOOT 17), 2017.

[BOHG13] Jesús Bobadilla, Fernando Ortega, Antonio Hernando, and Abraham
Gutiérrez. Recommender systems survey. Knowledge-based systems, 46,
2013.

[BQLN17a] Joachim Bruneau-Queyreix, Mathias Lacaud, and Daniel Négru. A
multiple-source adaptive streaming solution enhancing consumer’s per-
ceived quality. In 2017 14th IEEE Annual Consumer Communications &
Networking Conference (CCNC), pages 580–581. IEEE, 2017.

[BQLN+17b] Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel Négru, Jordi Mongay
Batalla, and Eugen Borcoci. Ms-stream: A multiple-source adaptive
streaming solution enhancing consumer’s perceived quality. In 2017
14th IEEE Annual Consumer Communications & Networking Conference
(CCNC), pages 427–434. IEEE, 2017.

[BQLN+17c] Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel Négru, Jordi Mongay
Batalla, and Eugen Borcoci. QoE enhancement through cost-effective
adaptation decision process for multiple-server streaming over HTTP. In
2017 IEEE International Conference on Multimedia and Expo (ICME),
pages 1–6. IEEE, 2017.

[BQLN+18] Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel Négru, Jordi Mongay
Batalla, and Eugen Borcoci. Adding a new dimension to HTTP adap-
tive streaming through multiple-source capabilities. IEEE MultiMedia,
25(3):65–78, 2018.

[Bre15] Eric A Brewer. Kubernetes and the path to cloud native. In Sixth ACM
Symposium on Cloud Computing, SOCC, 2015.

[BSG17] Vincent Bindschaedler, Reza Shokri, and Carl A Gunter. Plausible
deniability for privacy-preserving data synthesis. Proceedings of the
VLDB Endowment, 10(5):481–492, 2017.

[Bur02] Robin Burke. Hybrid recommender systems: Survey and experiments.
User modeling and user-adapted interaction, 12(4), 2002.

Simon Da Silva — Univ. Bordeaux, LaBRI 121 High-QoE Privacy-Preserving Video Streaming

BIBLIOGRAPHY

[BVK+12] Anirban Basu, Jaideep Vaidya, Hiroaki Kikuchi, Theo Dimitrakos, and
Srijith K Nair. Privacy preserving collaborative filtering for SaaS en-
abling PaaS clouds. Journal of Cloud Computing: Advances, Systems and
Applications, 1(1):8, 2012.

[BVKD11] Anirban Basu, Jaideep Vaidya, Hiroaki Kikuchi, and Theo Dimitrakos.
Privacy-preserving collaborative filtering for the cloud. In 23rd Interna-
tional Conference on Cloud Computing Technology and Science, Cloud-
Com. IEEE, 2011.

[BVKD13] Anirban Basu, Jaideep Vaidya, Hiroaki Kikuchi, and Theo Dimitrakos.
Privacy-preserving collaborative filtering on the cloud and practical im-
plementation experiences. In Sixth IEEE International Conference on
Cloud Computing, 2013.

[BWG+16] Stefan Brenner, Colin Wulf, David Goltzsche, Nico Weichbrodt, Matthias
Lorenz, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. Secure-
keeper: confidential zookeeper using Intel SGX. In Proceedings of the 17th
International Middleware Conference, pages 1–13, 2016.

[CA07] Richard Cissée and Sahin Albayrak. An agent-based approach for privacy-
preserving recommender systems. In 6th international joint conference
on Autonomous agents and multiagent systems, AAMAS. ACM, 2007.

[Can] Canonical. MaaS: Very fast server provisioning for your data centre.

[CAR17] Shujie Cui, Muhammad Rizwan Asghar, and Giovanni Russello. Privacy-
preserving content delivery networks. In 2017 IEEE 42nd Conference on
Local Computer Networks (LCN), pages 607–610. IEEE, 2017.

[CC02] John Canny and John Canny. Collaborative filtering with privacy via
factor analysis. In 25th annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 2002.

[CCX+19] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin,
and Ten H Lai. SgxPectre: Stealing Intel secrets from SGX enclaves via
speculative execution. In European Symposium on Security and Privacy
(EuroS&P). IEEE, 2019.

[CD16a] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryp-
tology ePrint Archive, 2016(086):1–118, 2016.

Simon Da Silva — Univ. Bordeaux, LaBRI 122 High-QoE Privacy-Preserving Video Streaming

BIBLIOGRAPHY

[CD16b] Victor Costan and Srinivas Devadas. Intel SGX explained. IACR Cryp-
tology ePrint Archive, 2016:86, 2016.

[CDK+03] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: high-bandwidth multicast
in cooperative environments. ACM SIGOPS Operating Systems Review,
37(5):298–313, 2003.

[CDM+09] David R Choffnes, Jordi Duch, Dean Malmgren, Roger Guierma, Fabian E
Bustamante, and Luis Amaral. Swarmscreen: Privacy through plausible
deniability in P2P systems. Technical report, Northwestern EECS, 2009.

[CDN18] CDNPlanet. An overview of content delivery networks with pops in united
states. https://www.cdnplanet.com/geo/united-states-cdn, 2018.

[Cis18] VNI Cisco. Cisco visual networking index: Forecast and trends, 2017–2022.
Technical report, Cisco, 2018.

[CKN+11] Joseph A Calandrino, Ann Kilzer, Arvind Narayanan, Edward W Felten,
and Vitaly Shmatikov. "you might also like:" privacy risks of collaborative
filtering. In IEEE Symposium on Security and Privacy, S&P, 2011.

[Clo] Cloud Native Computing Foundation. Helm: The package manager for
Kubernetes.

[CPK95] Ann L Chervenak, David A Patterson, and Randy H Katz. Storage
systems for movies-on-demand video servers. In Proceedings of IEEE 14th
Symposium on Mass Storage Systems, pages 246–256. IEEE, 1995.

[CZRZ17] Sanchuan Chen, Xiaokuan Zhang, Michael K Reiter, and Yinqian Zhang.
Detecting privileged side-channel attacks in shielded execution with déjá
vu. In Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security, pages 7–18, 2017.

[Dai20] Dailymotion. The home for videos that matter. https://www.

dailymotion.com, 2020.

[DAS] DASH Industry Forum. Guidelines for implementation: DASH-
AVC/264 Test cases and Vectors. https://dashif.org/docs/

{DASH}-AVC-264-Test-Vectors-v1.0.pdf.

Simon Da Silva — Univ. Bordeaux, LaBRI 123 High-QoE Privacy-Preserving Video Streaming

https://www.cdnplanet.com/geo/united-states-cdn
https://www.dailymotion.com
https://www.dailymotion.com
https://dashif.org/docs/{DASH}-AVC-264-Test-Vectors-v1.0.pdf
https://dashif.org/docs/{DASH}-AVC-264-Test-Vectors-v1.0.pdf

BIBLIOGRAPHY

[DBYEV19] Jérémie Decouchant, Antoine Boutet, Jiangshan Yu, and Paulo Esteves-
Verissimo. P3ls: Plausible deniability for practical privacy-preserving
live streaming. In SRDS 2019-38th International Symposium on Reliable
Distributed Systems, 2019.

[DCG12] Adrian J Duncan, Sadie Creese, and Michael Goldsmith. Insider attacks
in cloud computing. In 11th international conference on trust, security
and privacy in computing and communications, TrustCom. IEEE, 2012.

[Des20] Cameron Desrochers. Lock-free queue for C++11. https://github.com/

cameron314/concurrentqueue, January 2020.

[DHT04] Tai T Do, Kien A Hua, and Mounir A Tantaoui. P2vod: Providing fault
tolerant video-on-demand streaming in peer-to-peer environment. In
2004 IEEE International Conference on Communications (IEEE Cat. No.
04CH37577), volume 3, pages 1467–1472. IEEE, 2004.

[DI18] DASH-IF. Dash-if position paper: Server and network assisted DASH
(sand). https://dashif.org/docs/SAND-Whitepaper-Dec13-final.

pdf, 2018.

[DLHC05] Chris Dana, Danjue Li, David Harrison, and Chen-Nee Chuah. Bass:
Bittorrent assisted streaming system for video-on-demand. In 2005 IEEE
7th Workshop on Multimedia Signal Processing, pages 1–4. IEEE, 2005.

[DMPQ16] Jérémie Decouchant, Sonia Ben Mokhtar, Albin Petit, and Vivien Quéma.
Pag: Private and accountable gossip. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), pages 35–44.
IEEE, 2016.

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. Technical report, Naval Research Lab Washington
DC, 2004.

[DSBMC+19] Simon Da Silva, Sonia Ben Mokhtar, Stefan Contiu, Daniel Négru, Lau-
rent Réveillère, and Etienne Rivière. Privatube: Privacy-preserving edge-
assisted video streaming. In Proceedings of the 20th International Mid-
dleware Conference, pages 189–201, 2019.

[DSBQL+18a] Simon Da Silva, Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel
Négru, and Laurent Réveillère. MUSLIN: Achieving high, fairly shared

Simon Da Silva — Univ. Bordeaux, LaBRI 124 High-QoE Privacy-Preserving Video Streaming

https://github.com/cameron314/concurrentqueue
https://github.com/cameron314/concurrentqueue
https://dashif.org/docs/SAND-Whitepaper-Dec13-final.pdf
https://dashif.org/docs/SAND-Whitepaper-Dec13-final.pdf

BIBLIOGRAPHY

QoE through multi-source live streaming. In Proceedings of the 23rd
Packet Video Workshop, pages 54–59, 2018.

[DSBQL+18b] Simon Da Silva, Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel
Négru, and Laurent Réveillère. MUSLIN demo: high QoE fair multi-
source live streaming. In Proceedings of the 9th ACM Multimedia Systems
Conference, pages 529–532, 2018.

[DSBQL+19] Simon Da Silva, Joachim Bruneau-Queyreix, Mathias Lacaud, Daniel
Négru, and Laurent Réveillère. MUSLIN: A QoE-aware CDN resources
provisioning and advertising system for cost-efficient multisource live
streaming. International Journal of Network Management, page e2081,
2019.

[dSDR16] Pedro Moreira da Silva, Jaime Dias, and Manuel Ricardo. Mistrustful P2P:
Privacy-preserving file sharing over untrustworthy peer-to-peer networks.
In 2016 IFIP Networking Conference (IFIP Networking) and Workshops,
pages 395–403. IEEE, 2016.

[DTCU17] Jie Deng, Gareth Tyson, Felix Cuadrado, and Steve Uhlig. Internet scale
user-generated live video streaming: The twitch case. In International
Conference on Passive and Active Network Measurement, pages 60–71.
Springer, 2017.

[DTS+19] Erika Duriakova, Elias Z Tragos, Barry Smyth, Neil Hurley, Francisco J
Peña, Panagiotis Symeonidis, James Geraci, and Aonghus Lawlor. PDM-
FRec: a decentralised matrix factorisation with tunable user-centric pri-
vacy. In 13th ACM Conference on Recommender Systems, RecSys, 2019.

[Dwo08] Cynthia Dwork. Differential privacy: A survey of results. In International
conference on theory and applications of models of computation, TAMC.
Springer, 2008.

[Fer17] Pat Ferrel. Multi-domain predictive AI or how to make one thing predict
another, June 2017.

[Fer19] Alex Fernández. alexfernandez/loadtest, December 2019. original-date:
2013-06-21T23:50:01Z.

Simon Da Silva — Univ. Bordeaux, LaBRI 125 High-QoE Privacy-Preserving Video Streaming

BIBLIOGRAPHY

[FH07] Daniel M Fleder and Kartik Hosanagar. Recommender systems and their
impact on sales diversity. In 8th ACM conference on Electronic commerce.
ACM, 2007.

[Fil18] Filecoin. Filecoin whitepaper. https://filecoin.io/filecoin.pdf,
2018.

[FKV+15] Arik Friedman, Bart P Knijnenburg, Kris Vanhecke, Luc Martens, and
Shlomo Berkovsky. Privacy aspects of recommender systems. In Recom-
mender Systems Handbook. Springer, 2015.

[Flu] Fluentd project. Fluentd: an open source data collector for unified logging
layer.

[FMM+15] Ashley Flavel, Pradeepkumar Mani, David Maltz, Nick Holt, Jie Liu,
Yingying Chen, and Oleg Surmachev. Fastroute: A scalable load-aware
anycast routing architecture for modern cdns. In 12th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 15), pages 381–
394, 2015.

[GCM+16] Trinabh Gupta, Natacha Crooks, Whitney Mulhern, Srinath Setty,
Lorenzo Alvisi, and Michael Walfish. Scalable and private media consump-
tion with popcorn. In 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 16), pages 91–107, 2016.

[GDBJ10] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. Beyond
accuracy: evaluating recommender systems by coverage and serendipity.
In 4th ACM conference on Recommender systems, RecSys, 2010.

[GEB+13] Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent, Mu Mu,
and Nicholas Race. Towards network-wide QoE fairness using openflow-
assisted adaptive video streaming. In Proceedings of the 2013 ACM
SIGCOMM workshop on Future human-centric multimedia networking,
pages 15–20, 2013.

[GESM17] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel, and Tilo Müller.
Cache attacks on Intel SGX. In 10th European Workshop on Systems
Security, EuroSec. ACM, 2017.

Simon Da Silva — Univ. Bordeaux, LaBRI 126 High-QoE Privacy-Preserving Video Streaming

https://filecoin.io/filecoin.pdf

BIBLIOGRAPHY

[GFD+14] Florent Garcin, Boi Faltings, Olivier Donatsch, Ayar Alazzawi, Christophe
Bruttin, and Amr Huber. Offline and online evaluation of news recom-
mender systems at swissinfo.ch. In 8th ACM Conference on Recommender
systems, 2014.

[GHK+10] Rachid Guerraoui, Kévin Huguenin, Anne-Marie Kermarrec, Maxime
Monod, and Swagatika Prusty. Lifting: lightweight freerider-tracking
in gossip. In ACM/IFIP/ USENIX International Conference on Dis-
tributed Systems Platforms and Open Distributed Processing, pages 313–
333. Springer, 2010.

[GJP12] Saikat Guha, Mudit Jain, and Venkata N Padmanabhan. Koi: A location-
privacy platform for smartphone apps. In Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 183–196, 2012.

[GKP+17] Rachid Guerraoui, Anne-Marie Kermarrec, Rhicheek Patra, Mahammad
Valiyev, and Jingjing Wang. I know nothing about you but here is what
you might like. In 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 439–450. IEEE, 2017.

[GLS+17] Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan
Haller, and Manuel Costa. Strong and efficient cache side-channel pro-
tection using hardware transactional memory. In 26th USENIX Security
Symposium, 2017.

[Goo06] Google VP Marrisa Mayer. Presentation at Third Annual Web 2.0 Summit,
2006.

[Goo18] Google. Google cloud CDN points of presence. https://cloud.google.

com/cdn/docs/locations, 2018.

[Goo20] Google. QUIC, a multiplexed stream transport over UDP. Technical
report, Google, 2020.

[Gro] GroupLens research at the University of Minnesota. Description of the
movielens ml-20m dataset.

[HEE18] Mike Hintze and Khaled El Emam. Comparing the benefits of pseudonymi-
sation and anonymisation under the GDPR. Journal of Data Protection
& Privacy, 2(2), 2018.

Simon Da Silva — Univ. Bordeaux, LaBRI 127 High-QoE Privacy-Preserving Video Streaming

https://cloud.google.com/cdn/docs/locations
https://cloud.google.com/cdn/docs/locations

BIBLIOGRAPHY

[Hiv] Hive Streaming. Enterprise content delivery, video distribution software.
https://www.hivestreaming.com/.

[HK15a] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History
and context. Acm transactions on interactive intelligent systems (tiis),
5(4):1–19, 2015.

[HK15b] F Maxwell Harper and Joseph A Konstan. The MovieLens datasets:
History and context. ACM transactions on interactive intelligent systems
(TIIS), 5(4), 2015.

[HLC+18] Yunhua He, Hong Li, Xiuzhen Cheng, Yan Liu, Chao Yang, and Limin
Sun. A blockchain based truthful incentive mechanism for distributed
P2P applications. IEEE Access, 6:27324–27335, 2018.

[HSH+11] Tobias Hoßfeld, Michael Seufert, Matthias Hirth, Thomas Zinner, Phuoc
Tran-Gia, and Raimund Schatz. Quantification of youtube QoE via
crowdsourcing. In 2011 IEEE International Symposium on Multimedia,
pages 494–499. IEEE, 2011.

[HSKHV16] Tobias Hoßfeld, Lea Skorin-Kapov, Poul E Heegaard, and Martin Varela.
Definition of QoE fairness in shared systems. IEEE Communications
Letters, 21(1):184–187, 2016.

[HWC+15] Han Hu, Yonggang Wen, Tat-Seng Chua, Jian Huang, Wenwu Zhu, and
Xuelong Li. Joint content replication and request routing for social video
distribution over cloud CDN: A community clustering method. IEEE
transactions on circuits and systems for video technology, 26(7):1320–1333,
2015.

[Int20a] Intel. Intel Software Guard Extensions SSL. https://github.com/

intel/intel-sgx-ssl, March 2020.

[Int20b] Intel. SDK for Intel Software Guard Extensions. https://software.

intel.com/en-us/sgx/sdk, April 2020.

[IT17] ITU-T. P.1203 : Parametric bitstream-based quality assessment of progres-
sive download and adaptive audiovisual streaming services over reliable
transport. https://www.itu.int/rec/T-REC-P.1203, 2017.

Simon Da Silva — Univ. Bordeaux, LaBRI 128 High-QoE Privacy-Preserving Video Streaming

https://www.hivestreaming.com/
https://github.com/intel/intel-sgx-ssl
https://github.com/intel/intel-sgx-ssl
https://software.intel.com/en-us/sgx/sdk
https://software.intel.com/en-us/sgx/sdk
https://www.itu.int/rec/T-REC-P.1203

BIBLIOGRAPHY

[KCG17] Vaibhav Kulkarni, Bertil Chapuis, and Benoît Garbinato. Privacy-
preserving location-based services by using Intel SGX. In 1st International
Workshop on Human-centered Sensing, Networking, and Systems. ACM,
2017.

[KHH+18] Seongmin Kim, Juhyeng Han, Jaehyeong Ha, Taesoo Kim, and Dongsu
Han. SGX-Tor: A secure and practical tor anonymity network with SGX
enclaves. IEEE/ACM Transactions on Networking, 26(5), 2018.

[KMSG13] Miltiadis Kandias, Lilian Mitrou, Vasilis Stavrou, and Dimitris Gritzalis.
Youtube user and usage profiling: Stories of political horror and security
success. In International Conference on E-Business and Telecommunica-
tions, pages 270–289. Springer, 2013.

[KPW+19] Taehoon Kim, Joongun Park, JaewookWoo, Seungheun Jeon, and Jaehyuk
Huh. Shieldstore: Shielded in-memory key-value storage with SGX. In
Proceedings of the Fourteenth EuroSys Conference 2019, pages 1–15, 2019.

[KRR02] Jussi Kangasharju, James Roberts, and Keith W Ross. Object replication
strategies in content distribution networks. Computer Communications,
25(4):376–383, 2002.

[LBSR14] Kyongchun Lim, Yonghwan Bang, Jihoon Sung, and June-Koo Kevin Rhee.
Joint optimization of cache server deployment and request routing with
cooperative content replication. In 2014 IEEE International Conference
on Communications (ICC), pages 1790–1795. IEEE, 2014.

[LCW+06] Harry C Li, Allen Clement, Edmund L Wong, Jeff Napper, Indrajit Roy,
Lorenzo Alvisi, and Michael Dahlin. Bar gossip. In Proceedings of the
7th symposium on Operating systems design and implementation, pages
191–204, 2006.

[LDGS11] Pasquale Lops, Marco De Gemmis, and Giovanni Semeraro. Content-
based recommender systems: State of the art and trends. In Recommender
systems handbook, pages 73–105. Springer, 2011.

[LDR05] Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Incog-
nito: Efficient full-domain k-anonymity. In ACM SIGMOD international
conference on Management of data, 2005.

Simon Da Silva — Univ. Bordeaux, LaBRI 129 High-QoE Privacy-Preserving Video Streaming

BIBLIOGRAPHY

[LGC+09] Raul Landa, David Griffin, Richard G Clegg, Eleni Mykoniati, and Miguel
Rio. A sybilproof indirect reciprocity mechanism for peer-to-peer networks.
In IEEE INFOCOM 2009, pages 343–351. IEEE, 2009.

[LGL08] Yong Liu, Yang Guo, and Chao Liang. A survey on peer-to-peer video
streaming systems. Peer-to-peer Networking and Applications, 1(1):18–28,
2008.

[LN20] Mathias Lacaud and Daniel Négru. Multiple-Source Streaming over Re-
mote Radio Light Head: a pragmatic, efficient and reliable video streaming
system for 5G intra-building use cases. In 2020 IEEE International Sym-
posium on Broadband Multimedia Systems and Broadcasting (BMSB),
2020.

[LOH16] Wenjie Li, Sharief MA Oteafy, and Hossam S Hassanein. Streamcache:
Popularity-based caching for adaptive streaming over information-centric
networks. In 2016 IEEE international conference on communications
(ICC), pages 1–6. IEEE, 2016.

[LPM+17] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,
Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,
David Eyers, Rüdiger Kapitza, et al. Glamdring: Automatic application
partitioning for intel SGX. In USENIX Annual Technical Conference,
ATC, 2017.

[LSG+17] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and
Marcus Peinado. Inferring fine-grained control flow inside SGX enclaves
with branch shadowing. In 26th USENIX Security Symposium (USENIX
Security 17), pages 557–574, 2017.

[LXZ+14] Dixin Luo, Hongteng Xu, Hongyuan Zha, Jun Du, Rong Xie, Xiaokang
Yang, and Wenjun Zhang. You are what you watch and when you watch:
Inferring household structures from iptv viewing data. IEEE Transactions
on Broadcasting, 60(1):61–72, 2014.

[MBDC18] Ricky KP Mok, Vaibhav Bajpai, Amogh Dhamdhere, and KC Claffy. Re-
vealing the load-balancing behavior of youtube traffic on interdomain links.
In International Conference on Passive and Active Network Measurement,
pages 228–240. Springer, 2018.

Simon Da Silva — Univ. Bordeaux, LaBRI 130 High-QoE Privacy-Preserving Video Streaming

BIBLIOGRAPHY

[MBF+17a] Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo Pasin, Rafael
Pires, and Valerio Schiavoni. X-search: revisiting private web search using
Intel SGX. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, pages 198–208, 2017.

[MBF+17b] Sonia Ben Mokhtar, Antoine Boutet, Pascal Felber, Marcelo Pasin, Rafael
Pires, and Valerio Schiavoni. X-search: revisiting private web search using
Intel SGX. In 18th ACM/IFIP/USENIX Middleware Conference, 2017.

[MDMÖG18] Itishree Mohallick, Katrien De Moor, Özlem Özgöbek, and Jon Atle Gulla.
Towards new privacy regulations in europe: Users’ privacy perception in
recommender systems. In International Conference on Security, Privacy
and Anonymity in Computation, Communication and Storage, SpaCCS.
Springer, 2018.

[Med19] Mediego. The turnkey solution to personalize your content in real time.
https://www.mediego.com/en/, 2019.

[Mic18] Microsoft. Microsoft smooth streaming (MSS). https://www.microsoft.

com/silverlight/smoothstreaming/, 2018.

[MIE17] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. Cachezoom:
How SGX amplifies the power of cache attacks. In International Confer-
ence on Cryptographic Hardware and Embedded Systems, CHES. Springer,
2017.

[MM09] Frank McSherry and Ilya Mironov. Differentially private recommender
systems: Building privacy into the netflix prize contenders. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 627–636, 2009.

[MSO12] Marc Mendonca, Srini Seetharaman, and Katia Obraczka. A flexible
in-network ip anonymization service. In International conference on
communications, ICC. IEEE, 2012.

[Net20] Netflix. Watch tv shows online, watch movies online. https://www.

netflix.com, 2020.

[NGI] NGINX Inc. NGINX web server. https://www.nginx.com.

Simon Da Silva — Univ. Bordeaux, LaBRI 131 High-QoE Privacy-Preserving Video Streaming

https://www.mediego.com/en/
https://www.microsoft.com/silverlight/smoothstreaming/
https://www.microsoft.com/silverlight/smoothstreaming/
https://www.netflix.com
https://www.netflix.com
https://www.nginx.com

BIBLIOGRAPHY

[NPS04] Alok Nandan, Giovanni Pau, and Paola Salomoni. Ghostshare-reliable and
anonymous P2P video distribution. In IEEE Global Telecommunications
Conference Workshops, 2004. GlobeCom Workshops 2004., pages 200–210.
IEEE, 2004.

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of
large datasets (how to break anonymity of the netflix prize dataset). In
IEEE Symposium on Security and Privacy, 2008.

[NSS10] Erik Nygren, Ramesh K Sitaraman, and Jennifer Sun. The akamai
network: a platform for high-performance internet applications. ACM
SIGOPS Operating Systems Review, 44(3):2–19, 2010.

[OFMR16] Emanuel Onica, Pascal Felber, Hugues Mercier, and Etienne Rivière.
Confidentiality-preserving publish/subscribe: A survey. ACM computing
surveys (CSUR), 49(2):1–43, 2016.

[OTK+18] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. Varys: Protecting SGX enclaves from practical side-
channel attacks. In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 227–240, 2018.

[P2P] P2P Media Loader. Open-source javascript library for p2p media delivery.
https://github.com/novage/p2p-media-loader.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In International conference on the theory and applications
of cryptographic techniques, Eurocrypt. Springer, 1999.

[Pas12] Andrea Passarella. A survey on content-centric technologies for the current
internet: CDN and P2P solutions. Computer Communications, 35(1):1–32,
2012.

[Peea] Peer5. Last mile delivery: Ensure coverage in underserved regions and
internal networks with peer-assisted delivery. https://www.peer5.com/

p2p.

[Peeb] PeerTube. A decentralized video hosting network, based on free/libre
software. https://joinpeertube.org/en/.

Simon Da Silva — Univ. Bordeaux, LaBRI 132 High-QoE Privacy-Preserving Video Streaming

https://github.com/novage/p2p-media-loader
https://www.peer5.com/p2p
https://www.peer5.com/p2p
https://joinpeertube.org/en/

BIBLIOGRAPHY

[PFC+15] Stefano Petrangeli, Jeroen Famaey, Maxim Claeys, Steven Latré, and
Filip De Turck. QoE-driven rate adaptation heuristic for fair adaptive
video streaming. ACM Transactions on Multimedia Computing, Commu-
nications, and Applications (TOMM), 12(2):1–24, 2015.

[PGM+18] Rafael Pires, David Goltzsche, Sonia Ben Mokhtar, Sara Bouchenak, An-
toine Boutet, Pascal Felber, Rüdiger Kapitza, Marcelo Pasin, and Valerio
Schiavoni. Cyclosa: Decentralizing private web search through SGX-based
browser extensions. In 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), pages 467–477. IEEE, 2018.

[Pli19a] Plista. Artificial intelligence powered recommender as a service. https:

//www.recombee.com, 2019.

[Pli19b] Plista. We turn your content into business outcomes. https://www.

plista.com, 2019.

[Pro] Project Jupyter. Open-source software, open-standards, and services for
interactive computing across dozens of programming languages.

[PSn15] Sutheera Puntheeranurak and Nipith Sa-ngarmangkang. An improvement
of video streaming service using dynamic routing over openflow networks.
In 2015 7th International Conference on Information Technology and
Electrical Engineering (ICITEE), pages 285–289. IEEE, 2015.

[PVC18] Christian Priebe, Kapil Vaswani, and Manuel Costa. Enclavedb: A secure
database using SGX. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 264–278. IEEE, 2018.

[PWC03] Venkata N Padmanabhan, Helen J Wang, and Philip A Chou. Resilient
peer-to-peer streaming. In 11th IEEE International Conference on Net-
work Protocols, 2003. Proceedings., pages 16–27. IEEE, 2003.

[PZC11] Wei Pu, Zixuan Zou, and Chang Wen Chen. Dynamic adaptive streaming
over HTTP from multiple content distribution servers. In 2011 IEEE
Global Telecommunications Conference-GLOBECOM 2011, pages 1–5.
IEEE, 2011.

[Qua] Quanteec. Streaming with quanteec: Quality and cost. https://

quanteec.com.

Simon Da Silva — Univ. Bordeaux, LaBRI 133 High-QoE Privacy-Preserving Video Streaming

https://www.recombee.com
https://www.recombee.com
https://www.plista.com
https://www.plista.com
https://quanteec.com
https://quanteec.com

BIBLIOGRAPHY

[RJWS+17] Parisa Rahimzadeh, Carlee Joe-Wong, Kyuyong Shin, Youngbin Im,
Jongdeog Lee, and Sangtae Ha. Svc-tchain: Incentivizing good behavior in
layered P2P video streaming. In IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pages 1–9. IEEE, 2017.

[RVN+16] MA Rajan, Ashley Varghese, N Narendra, Meena Singh, VL Shivraj,
Girish Chandra, and P Balamuralidhar. Security and privacy for real
time video streaming using hierarchical inner product encryption based
publish-subscribe architecture. In 2016 30th International Conference on
Advanced Information Networking and Applications Workshops (WAINA),
pages 373–380. IEEE, 2016.

[San19] Sandvine. Global internet phenomena report. Technical report, Sandvine,
2019.

[San20] Sandvine. Mobile internet phenomena report. Technical report, Sandvine,
2020.

[SCF+15] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. Vc3: Trustworthy
data analytics in the cloud using SGX. In 2015 IEEE Symposium on
Security and Privacy, pages 38–54. IEEE, 2015.

[SCFJ03] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A
transport protocol for real-time applications. STD 64, RFC Editor, July
2003. http://www.rfc-editor.org/rfc/rfc3550.txt.

[SDK+07] Kyoungwon Suh, Christophe Diot, Jim Kurose, Laurent Massoulie,
Christoph Neumann, Don Towsley, and Matteo Varvello. Push-to-peer
video-on-demand system: Design and evaluation. IEEE Journal on Se-
lected Areas in Communications, 25(9):1706–1716, 2007.

[SES+14] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias
Hoßfeld, and Phuoc Tran-Gia. A survey on quality of experience of
HTTP adaptive streaming. IEEE Communications Surveys & Tutorials,
17(1):469–492, 2014.

[SG16] Jagruti Sahoo and Roch Glitho. Greedy heuristic for replica server
placement in cloud based content delivery networks. In 2016 IEEE

Simon Da Silva — Univ. Bordeaux, LaBRI 134 High-QoE Privacy-Preserving Video Streaming

http://www.rfc-editor.org/rfc/rfc3550.txt

BIBLIOGRAPHY

Symposium on Computers and Communication (ISCC), pages 302–309.
IEEE, 2016.

[Sha12] Ron Sharp. Latency in cloud-based interactive streaming content. Bell
Labs Technical Journal, 17(2), 2012.

[SJ14] Yilin Shen and Hongxia Jin. Privacy-preserving personalized recommenda-
tion: An instance-based approach via differential privacy. In International
Conference on Data Mining, ICDE. IEEE, 2014.

[SJWH+17] Kyuyong Shin, Carlee Joe-Wong, Sangtae Ha, Yung Yi, Injong Rhee, and
Douglas S Reeves. T-chain: A general incentive scheme for cooperative
computing. IEEE/ACM Transactions on Networking, 25(4):2122–2137,
2017.

[SKSX18] Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. Privacy
enhanced matrix factorization for recommendation with local differential
privacy. IEEE Transactions on Knowledge and Data Engineering, 30(9),
2018.

[SLM+19] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. Zombieload: Cross-
privilege-boundary data sampling. arXiv preprint arXiv:1905.05726,
2019.

[Soc18] Socialx. Socialx whitepaper. https://socialx.network/wp-content/

uploads/2018/02/Whitepaper-SocialX-v0.4.1.compressed-1.pdf,
2018.

[Sod11] Iraj Sodagar. The MPEG-DASH standard for multimedia streaming over
the internet. IEEE multimedia, 18(4):62–67, 2011.

[Sph17] Sphere. Sphere whitepaper. https://sphere.social/wp-content/

uploads/2017/12/Sphere_Whitepaper_v1.7.4.pdf, 2017.

[SPTH09] Reza Shokri, Pedram Pedarsani, George Theodorakopoulos, and Jean-
Pierre Hubaux. Preserving privacy in collaborative filtering through
distributed aggregation of offline profiles. In 3rd ACM conference on
Recommender systems, RecSys. ACM, 2009.

Simon Da Silva — Univ. Bordeaux, LaBRI 135 High-QoE Privacy-Preserving Video Streaming

https://socialx.network/wp-content/uploads/2018/02/Whitepaper-SocialX-v0.4.1.compressed-1.pdf
https://socialx.network/wp-content/uploads/2018/02/Whitepaper-SocialX-v0.4.1.compressed-1.pdf
https://sphere.social/wp-content/uploads/2017/12/Sphere_Whitepaper_v1.7.4.pdf
https://sphere.social/wp-content/uploads/2017/12/Sphere_Whitepaper_v1.7.4.pdf

BIBLIOGRAPHY

[SRL98] Henning Schulzrinne, Anup Rao, and Robert Lanphier. Real time
streaming protocol (RTSP). RFC 2326, RFC Editor, April 1998.
http://www.rfc-editor.org/rfc/rfc2326.txt.

[SRR09] Kyuyong Shin, Douglas S Reeves, and Injong Rhee. Treat-before-trick:
Free-riding prevention for bittorrent-like peer-to-peer networks. In 2009
IEEE International Symposium on Parallel & Distributed Processing,
pages 1–12. IEEE, 2009.

[Ste18] Steem. Steem whitepaper. https://steem.io/SteemWhitePaper.pdf,
2018.

[Sto18] Storj. Storj whitepaper. https://storj.io/storj.pdf, 2018.

[Str] Streamroot. Powering the next generation of video delivery. https:

//streamroot.io.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
10(05):557–570, 2002.

[Ten18] Gil Tene. wrk2: a HTTP benchmarking tool based mostly on wrk. https:

//github.com/giltene/wrk2, 2018.

[TM12] Bo Tan and Laurent Massoulié. Optimal content placement for peer-to-
peer video-on-demand systems. IEEE/ACM transactions on networking,
21(2):566–579, 2012.

[Twi18] Twinge. Gamesdonequick’s streams at twinge. https://twinge.tv/

gamesdonequick/streams/#/22233544288, 2018.

[Twi20] Twitch. Twitch is the world‘s leading video platform and community for
gamers. https://www.twitch.tv, 2020.

[VBMW+18] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In 27th USENIX Security
Symposium (USENIX Security 18), pages 991–1008, 2018.

[Vim20] Vimeo. The world’s leading professional video platform and community.
https://vimeo.com, 2020.

Simon Da Silva — Univ. Bordeaux, LaBRI 136 High-QoE Privacy-Preserving Video Streaming

http://www.rfc-editor.org/rfc/rfc2326.txt
https://steem.io/SteemWhitePaper.pdf
https://storj.io/storj.pdf
https://streamroot.io
https://streamroot.io
https://github.com/giltene/wrk2
https://github.com/giltene/wrk2
https://twinge.tv/gamesdonequick/streams/#/22233544288
https://twinge.tv/gamesdonequick/streams/#/22233544288
https://www.twitch.tv
https://vimeo.com

BIBLIOGRAPHY

[VPF+18] Sébastien Vaucher, Rafael Pires, Pascal Felber, Marcelo Pasin, Valerio
Schiavoni, and Christof Fetzer. SGX-aware container orchestration for
heterogeneous clusters. In 38th International Conference on Distributed
Computing Systems, ICDCS. IEEE, 2018.

[VRS+18] Xavier Vilaça, Luís Rodrigues, João Silva, Hugo Miranda, Gustavo Correia,
and Tiago Maurício. Fastrank: Practical lightweight tolerance to rational
behavior in edge assisted streaming. Pervasive and Mobile Computing,
46:18–33, 2018.

[VZ19] André Calero Valdez and Martina Ziefle. The users’ perspective on the
privacy-utility trade-offs in health recommender systems. International
Journal of Human-Computer Studies, 121, 2019.

[W3C] W3C. Activitypub decentralized social networking protocol. https:

//www.w3.org/TR/activitypub/.

[WCP+17] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel hazards
in SGX. In ACM SIGSAC Conference on Computer and Communications
Security, CCS. ACM, 2017.

[Web] WebRTC. Real-time communication for the web. https://webrtc.org/.

[WLM11] Weijie Wu, John CS Lui, and Richard TB Ma. Incentivizing upload
capacity in P2P-VoD systems: a game theoretic analysis. In International
Conference on Game Theory for Networks, pages 337–352. Springer, 2011.

[WML13] Weijie Wu, Richard TB Ma, and John CS Lui. Distributed caching
via rewarding: An incentive scheme design in P2P-VoD systems. IEEE
Transactions on Parallel and Distributed Systems, 25(3):612–621, 2013.

[WTAR19] Jun Wang, Qiang Tang, Afonso Arriaga, and Peter YA Ryan. Novel
collaborative filtering recommender friendly to privacy protection. In
International Joint Conference on Artificial Intelligence, IJCAI, 2019.

[WXW14] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space:
high-bandwidth and reliable covert channel attacks inside the cloud.
IEEE/ACM Transactions on Networking, 23(2):603–615, 2014.

Simon Da Silva — Univ. Bordeaux, LaBRI 137 High-QoE Privacy-Preserving Video Streaming

https://www.w3.org/TR/activitypub/
https://www.w3.org/TR/activitypub/
https://webrtc.org/

BIBLIOGRAPHY

[XLKZ07] Susu Xie, Bo Li, Gabriel Y Keung, and Xinyan Zhang. Coolstreaming:
Design, theory, and practice. IEEE Transactions on multimedia, 9(8):1661–
1671, 2007.

[YLZ+09] Hao Yin, Xuening Liu, Tongyu Zhan, Vyas Sekar, Feng Qiu, Chuang Lin,
Hui Zhang, and Bo Li. Design and deployment of a hybrid CDN-P2P
system for live video streaming: experiences with livesky. In Proceedings
of the 17th ACM international conference on Multimedia, pages 25–34,
2009.

[You20] YouTube. Share your videos with friends, family, and the world. https:

//www.youtube.com, 2020.

[YZZZ06] Hongliang Yu, Dongdong Zheng, Ben Y Zhao, and Weimin Zheng. Un-
derstanding user behavior in large-scale video-on-demand systems. ACM
SIGOPS Operating Systems Review, 40(4):333–344, 2006.

[ZLHC14] Ge Zhang, Wei Liu, Xiaojun Hei, and Wenqing Cheng. Unreeling xunlei
kankan: Understanding hybrid CDN-P2P video-on-demand streaming.
IEEE Transactions on Multimedia, 17(2):229–242, 2014.

[ZLL15] Shengkai Zhang, Bo Li, and Baochun Li. Presto: Towards fair and
efficient HTTP adaptive streaming from multiple servers. In 2015 IEEE
international conference on communications (ICC), pages 6849–6854.
IEEE, 2015.

[ZLM16] Shuai Zhao, Zhu Li, and Deep Medhi. Low delay mpeg dash streaming
over the webrtc data channel. In 2016 IEEE International Conference on
Multimedia & Expo Workshops (ICMEW), pages 1–6. IEEE, 2016.

[ZT15] Hanying Zheng and Xueyan Tang. The server provisioning problem for
continuous distributed interactive applications. IEEE Transactions on
Parallel and Distributed Systems, 27(1):271–285, 2015.

[ZWCR09] Hao Zhang, Jiajun Wang, Minghua Chen, and Kannan Ramchandran.
Scaling peer-to-peer video-on-demand systems using helpers. In 2009
16th IEEE international conference on image processing (ICIP), pages
3053–3056. IEEE, 2009.

Simon Da Silva — Univ. Bordeaux, LaBRI 138 High-QoE Privacy-Preserving Video Streaming

https://www.youtube.com
https://www.youtube.com

Appendix A

Publications

A.1 PProx

G. Rosinosky, S. Da Silva, S. Ben Mokhtar, D. Négru, L. Réveillère, E. Rivière.
PProx: Efficient Privacy for Recommendation-as-a-Service.
Submitted - 21st International Middleware Conference (Middleware ’20).

A.2 PrivaTube

S. Da Silva, S. Ben Mokhtar, S. Contiu, D. Négru, L. Réveillère, E. Rivière.
PrivaTube: Privacy-Preserving Edge-Assisted Video Streaming.
20th International Middleware Conference (Middleware ’19).

S. Da Silva.
Priva-Stream: Private Collaborative Live Streaming.
19th International Middleware Conference Doctoral Symposium (Middleware ’18).

S. Da Silva.
Priva-Stream: Private Collaborative Streaming.
19th International Middleware Conference Poster (Middleware ’18).

Simon Da Silva — Univ. Bordeaux, LaBRI 139 High-QoE Privacy-Preserving Video Streaming

APPENDIX A. PUBLICATIONS

A.3 Muslin

S. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère.
MUSLIN: A QoE-Aware CDN Resources Provisioning and Advertising System
for Cost-Efficient Multi-Source Live Streaming.
International Journal of Network Management (IJNM ’19).

S. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère.
MUSLIN: Achieving High, Fairly Shared QoE Through Multi-Source Live
Streaming.
Packet Video Workshop (PV ’18).

S. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère.
MUSLIN demo: High QoE Fair Multi-Source Live Streaming.
ACM Multimedia Systems Conference (MMSys ’18).

A.4 MS-Stream

J. Bruneau-Queyreix, S. Da Silva, M. Lacaud, D. Négru.
Vers une meilleure diffusion vidéo sur Internet.
Interstices, INRIA, 2018.

A.5 Awards

DASH-IF Excellence in DASH Award
3rd place
MMSys ’18

Student Travel Grant Award
MMSys ’18

Simon Da Silva — Univ. Bordeaux, LaBRI 140 High-QoE Privacy-Preserving Video Streaming

Appendix B

Résumé étendu

B.1 Introduction

Avec l’essor d’Internet pour le grand public sont apparus de nouveaux modes de consom-
mation. Tout d’abord, les contenus vidéo sur des plates-formes telles que YouTube [You20],
Vimeo [Vim20] ou Dailymotion [Dai20] augmentent en quantité et en qualité chaque an-
née, notamment grâce à la rémunération des auteurs via la publicité et les partenariats. Il
y a également une demande croissante du public pour des contenus spécialisés, dorénavant
consommables sur tous supports (ordinateur, tablette, smartphone, téléviseur connecté,
etc.). Par ailleurs, les vidéophiles souhaitent visionner des films et séries à leur rythme,
sur leur support de prédilection, sans dépendre du programme télévisé. Pour cette raison,
des services de vidéo à la demande (VoD) ont émergé. Ces méthodes de diffusion "Over
The Top" grâce à des sites web ou des applications deviennent les solutions préférées des
consommateurs et consommatrices.

En effet, le streaming vidéo représente actuellement plus de 60% du trafic Internet
mondial total [San19], 65% du trafic mobile sur Internet [San20], et devrait atteindre
82% du trafic total d’ici 2022 [Cis18]. Youtube et Netflix représentent à eux seuls plus
de 50% du trafic Internet en heure de pointe aux États-Unis. De plus, l’essence même
de la télévision (la diffusion en direct) est en train de basculer vers des alternatives sur
Internet comme Twitch, privilégiées par le public grâce à leur flexibilité d’utilisation et
de support. La part du streaming vidéo en direct sur Internet est également en très forte
croissance, puisqu’elle devrait être multipliée par 15 pour atteindre 17% du trafic vidéo
total d’ici 2022 [Cis18].

Simon Da Silva — Univ. Bordeaux, LaBRI 141 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

Ces nouveaux modes de consommation de contenus posent un problème majeur : la qualité
d’expérience proposée à l’utilisateur. En effet, avec une telle croissance, les opérateurs et
fournisseurs de contenu peinent à mettre à niveau leurs infrastructures pour supporter
la demande toujours croissante des utilisateurs. Les réseaux sont souvent saturés, les
serveurs se retrouvent surchargés, et il devient de plus en plus difficile de proposer une
diffusion fiable, sans coupures, avec une bonne qualité visuelle et une stabilité satisfaisante,
à des coûts abordables pour les fournisseurs de contenus. Il est alors nécessaire de trouver
des solutions pour réduire l’impact de ces flux sur la santé du réseau, en permettant
au plus grand nombre d’accéder aux ressources tout en fournissant une bonne qualité
d’expérience aux utilisateurs consommant les contenus.

Figure B.1: Streaming adaptatif sur HTTP

Des méthodes de streaming vidéo adaptatif sur HTTP ont récemment vu le jour, telles
que Adobe HDS [Ado18], Apple HLS [App18], Microsoft SS [Mic18], et notamment le
standard DASH [Sod11] qui est utilisé entre autres par YouTube, Facebook, Netflix
et Twitch. L’objectif de ces techniques est de réduire le nombre de coupures lors de la
diffusion de vidéos en adaptant la qualité du flux à la bande passante disponible entre
l’utilisateur et le serveur (voir Figure B.1). Pour cela, la vidéo est d’abord encodée dans
plusieurs qualités. Ensuite, chaque qualité est découpée en segments de quelques secondes.
Quand le client souhaite recevoir une vidéo, le serveur lui fournit une liste des différentes
qualités disponibles, et le lecteur vidéo choisit alors la qualité la plus adaptée à la bande
passante disponible pour chaque segment. La vidéo est alors reçue en plusieurs segments
qu’il faut remettre bout à bout pour lire le flux.

Simon Da Silva — Univ. Bordeaux, LaBRI 142 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

B.2 Motivation

Le standard DASH et les techniques similaires permettent d’améliorer sensiblement la
qualité d’expérience du public en éliminant la plupart des coupures dues aux mauvaises
conditions du réseau entre l’utilisateur et le serveur. En revanche, les problèmes liés
à la surcharge des serveurs ou à leur capacité perdurent. Si de nombreux utilisateurs
situés dans la même zone géographique regardent simultanément un même contenu
vidéo, le serveur le plus proche devient rapidement surchargé (voir Figure B.2). Certains
utilisateurs subissent alors des dégradations de qualité ou une indisponibilité du contenu,
et donc une qualité d’expérience faible et inéquitable.

Clients

Figure B.2: Congestion d’un serveur DASH

Une autre problématique importante est la protection de la vie privée. L’utilisation
des plateformes de streaming génère des informations personnelles sensibles en terme
d’historique de visionnage aux vidéos. Ces données peuvent être exploitées soit au bénéfice
de l’utilisateur, par exemple pour lui faire des recommandations personnalisées pour
d’autres contenus, ou au bénéfice de la plateforme pour de la publicité ciblée. Cependant,
la disponibilité des historiques d’accès peut également conduire à des menaces majeures
sur la vie privée. En effet, il est facilement possible d’inférer des informations privées
sur l’utilisateur, tel que son genre, origine, ses orientations politiques, religieuses ou
sexuelles [KMSG13], ou la composition du domicile familial [LXZ+14].

Simon Da Silva — Univ. Bordeaux, LaBRI 143 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

Objectif

L’objectif de cette thèse est de proposer un système pragmatique et réaliste de streaming
vidéo préservant la vie privée, proposant à la fois une meilleure qualité d’expérience et des
garanties de protection de la vie privée aux utilisateurs, au moindre coût. Proposer une
bonne qualité d’expérience signifie (1) fournir une qualité d’image haute, (2) minimiser
les fluctuations de qualité, (3) éviter les interruptions pendant la lecture, et (4) assurer
un temps de démarrage rapide [SES+14]. Protéger la vie privée des utilisateurs dans un
système de streaming vidéo signifie camoufler leur historique de visionnage, à la fois des
serveurs et des autres utilisateurs.

B.3 Contexte

Les solutions utilisant le standard DASH sont très efficaces pour faire face aux fluctua-
tions de bande passante entre l’utilisateur et le serveur. En revanche, lorsque certains
serveurs sont surchargés ou que des liens réseau sont saturés, il est judicieux de récupérer
simultanément le contenu vidéo depuis plusieurs sources différentes afin de maximiser la
qualité d’expérience de l’utilisateur [AGH+12]. Plusieurs protocoles de streaming vidéo
multi-sources ont récemment émergé pour faire face à la surcharge des serveurs ou liens
réseau [ZLL15, PZC11].

MS-Stream

MS-Stream (Multiple-Source Streaming) [BQLN+18, BQLN+17b, BQLN+17c], conçu
au LaBRI, est un protocole de streaming vidéo adaptatif compatible avec DASH. Il
permet d’utiliser plusieurs serveurs simultanément pour assurer une meilleure qualité
d’expérience au public, à la fois en réduisant le nombre de coupures et en améliorant la
qualité vidéo affichée (grâce à l’agrégation des bandes passantes).

Tout comme pour DASH, la vidéo est d’abord encodée en différentes qualités puis
découpée en segments contenant plusieurs groupes d’images. Le contenu est ensuite copié
sur plusieurs serveurs différents. Lorsque l’utilisateur souhaite regarder un segment d’un
contenu vidéo, le lecteur vidéo fait des requêtes auprès des différents serveurs disponibles).
Chaque serveur va alors proposer un sous-segment composé de groupes d’images en bonne
qualité et d’autres en qualité basse, en fonction de la bande passante disponible et de

Simon Da Silva — Univ. Bordeaux, LaBRI 144 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

sa capacité. De cette manière, le client peut rassembler les différents groupes d’images
reçus pour reformer un segment en bonne qualité. Si certains groupes d’images en bonne
qualité ne sont pas reçus, il est possible d’utiliser ceux de basse qualité fournis par les
autres serveurs afin de compléter le segment et continuer la lecture sans interruption.

Serveurs
de contenu
MS-Stream

Livraison
de contenu

Clients
MS-Stream

Requêtes des
sous-segments

HQ

LQ
SQ

3 Mbps

2 Mbps

1 Mbps

6
Mbps

HQ
HQ

HQ
HQ

HQ
HQ

SQ
SQ

SQ
SQ

SQ
SQ

LQ
LQ

LQ
LQ

LQ
LQ

HQ
HQ
HQ

HQ HQ
HQ

Figure B.3: Aggrégation de bande passante avec MS-Stream

Dans l’exemple de la Figure B.3, l’utilisateur a une bande passante de 3 Mbps avec
un serveur, 1 Mbps avec le deuxième, et 2 Mbps avec le troisième, une qualité visuelle
allant jusqu’à 6 Mbps pourra être obtenue. Cette qualité est alors supérieure à la qualité
que DASH aurait pu fournir (ici au maximum 3 Mbps avec le premier serveur). Si
maintenant le deuxième serveur devient surchargé ou indisponible, l’utilisateur pourra
toujours obtenir 3+2 = 5 Mbps depuis les deux autres serveurs, sans que cela n’interrompe
la lecture.

Dans MS-Stream, le client utilise donc les groupes d’images redondants de basse qualité
dans l’éventualité où ceux en bonne qualité ne sont pas reçus a temps. La surcharge
subie par le réseau en bande passante dépend alors de la qualité des vidéos. En moyenne,
nous observons moins de 10% d’augmentation de la bande passante utilisée lors de nos
évaluations. De plus, la génération et agrégation des sous-segments a une empreinte
minime [BQLN+17c] puisqu’il suffit d’assembler des groupes d’images déjà encodés en
différentes qualités par ailleurs.

Simon Da Silva — Univ. Bordeaux, LaBRI 145 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

B.4 Muslin

Les services de streaming dépendent de larges réseaux de serveurs pour héberger le
contenu vidéo. Les utilisateurs sont automatiquement redirigés vers le serveur le plus
proche d’eux afin de mitiger les saturations et atteindre un meilleur débit. Cependant, si
un large nombre d’utilisateurs situés dans la même région visionnent simultanément un
flux vidéo, le serveur le plus proche peut rapidement être surchargé.

Provisionnement

Prévisions

Découverte
des serveurs

Serveur
MUSLIN

Livraison
de contenu

Serveurs
de contenu

MUSLIN

Clients
MUSLIN

Retours

Module de
provision

Module de
sélection

Figure B.4: Vue d’ensemble de Muslin

Muslin [DSBQL+19, DSBQL+18a, DSBQL+18b] est une solution de streaming vidéo
fournissant une qualité d’expérience haute et équitable aux utilisateurs, nécessitant une
infrastructure moindre que les solutions actuelles. Muslin implémente MS-Stream pour
la livraison du contenu afin d’agréger les bandes passantes. Muslin utilise des retours
périodiques automatisés des lecteurs vidéo des clients pendant les sessions de streaming
ainsi qu’un score de classement pour provisionner et affecter dynamiquement les serveurs
selon de multiples critères. Cela permet d’ajuster l’échelle de l’infrastructure en temps
réel en fonction du besoin constaté et donc réduire les coûts.

Comme montré sur la Figure B.4, le module de provisionnement ajuste dynamiquement
le nombre de serveurs en fonction des besoins constatés et de l’estimation de la bande
passante nécessaire.

Le module de sélection affecte des serveurs aux clients en fonction de plusieurs critères,
tels que la distance, bande passante et charge, aggrégés dans un score de classement RSsc
(voir Figure B.5a). Comme illustré sur la Figure B.5b, le serveur le plus proche n’est pas
toujours le plus pertinent à affecter aux utilisateurs.

Simon Da Silva — Univ. Bordeaux, LaBRI 146 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

Découverte
des serveurs

Serveurs
de contenu

MUSLIN

Clients
MUSLIN

Serveur
MUSLIN

Module de
provision

Module de
sélection

RSsc élevé

RSsc moyen

RSsc faible

(a) Exemple de la sélection des serveurs grâce
au RSsc calculé par Muslin

Serveur
MUSLIN

X
Serveur de

contenu

Serveur proche
mais surchargé

Serveur de
contenu

Serveur de
contenu

RSsc élevé
RSsc moyen
RSsc faible

Client CDN
classique

Client
MUSLIN

(b) Pertinence du RSsc de Muslin

Nous avons utilisé Muslin pour rejouer un flux d’une journée couvrant un événement de
jeux vidéos, avec plusieurs centaines de clients et en testant des configurations différentes.
Les résultats montrent que notre approche surpasse les méthodes classiques en améliorant
la qualité d’expérience et l’équité entre utilisateurs (suppression totale des coupures,
amélioration de la qualité vidéo et diminution des fluctuations), tout en nécessitant moins
de serveurs (environ -18%).

B.5 PrivaTube

Transmettre des flux vidéo de manière fiable et à large échelle requiert une grande
plateforme de diffusion avec de nombreux serveurs. Cependant, les historiques d’accès
peuvent révéler des informations sensibles, et les plateformes d’hébergement sont connues
pour exploiter les données personnelles. Il est donc nécessaire de protéger les intérêts des
utilisateurs pour concevoir une nouvelle génération de services de streaming.

PrivaTube [DSBMC+19] est un système de streaming vidéo pragmatique fournissant
une bonne qualité d’expérience à ses utilisateurs tout en protégeant leur vie privée. Priva-
Tube étend MS-Stream pour améliorer la qualité d’expérience, réduire la charge sur les
serveurs et le coût de l’infrastructure en permettant aux clients de récupérer les contenus
à la fois depuis les serveurs centraux et depuis les pairs ayant regardé le même contenu
précédemment (voir Figure B.6a). PrivaTube protège la vie privée des utilisateurs en
chiffrant tous les flux dans des environnements d’exécution de confiance Intel SGX, à la
fois côté client et serveur (voir Figure B.7). De plus, des requêtes fictives permettent de
brouiller les pistes (voir Figure B.6b).

Simon Da Silva — Univ. Bordeaux, LaBRI 147 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

? ? ? ?

Serveurs
de contenu
PrivaTube

Clients
PrivaTube

Livraison
de contenu

(a) Vue d’ensemble de PrivaTube

? ? ? ?

Serveurs
de contenu
PrivaTube

Clients
PrivaTube

Requêtes
fictives E?

D?C?B?

A?

(b) Requêtes fictives de PrivaTube

Tracker Métadonnées Serveurs de contenu

Pairs? Serveurs?

Qualités?

Segments?

Figure B.7: Architecture de PrivaTube

En effet, PrivaTube permet de paramétrer la découverte probabiliste du lien entre
un utilisateur et une vidéo à hauteur d’un pourcentage δ. Ces requêtes fictives ont un
surcoût qui est exploité par le système en pré-provisionnant du contenu chez les pairs
afin d’améliorer la disponibilité et le passage à l’échelle. Cela permet ainsi d’améliorer la
qualité d’expérience grâce à l’agrégation des bandes passantes depuis plusieurs sources,
notamment pour les vidéos moins populaires.

Nous avons implémenté PrivaTube et l’avons déployé sur un réseau de 14 machines
pour évaluer ses performances et son comportement. Nous avons également conduit des
simulations à grande échelle sur des jeux de données réels d’historiques d’accès à des
vidéos. Nos résultats démontrent que PrivaTube offre un anonymat quasi-total aux
utilisateurs tout en proposant une meilleure qualité d’expérience que les systèmes actuels.

Simon Da Silva — Univ. Bordeaux, LaBRI 148 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

La durée de téléchargements des segments est 2 à 15 fois plus rapide, la qualité vidéo
entre 10% et 300% plus élevée, pour un surcoût de charge serveur de 17% et un délai de
démarrage supplémentaire de seulement 40ms.

B.6 PProx

Les plateformes de streaming vidéo (telles que YouTube [You20], Vimeo [Vim20] ou
Dailymotion [Dai20]), proposent des recommandations de contenus aux utilisateurs afin
de les conserver sur leur site ou application. Pour cela, elles peuvent soit établir des profils
d’intérêts pour les utilisateurs, soit dépendre de services de recommandations externes.
Le calcul de ces recommandations est toujours basé sur l’historique de navigation, et
parfois sur des données entrées par les utilisateurs. Cela pose donc des menaces à la
vie privée, puisque (i) les fournisseurs de service collectent des données personnelles, (ii)
un attaquant peut intercepter les recommandations et déduire des informations privées
sur l’utilisateur, et (iii) des plateformes malveillantes peuvent cibler des utilisateurs
spécifiques avec de la publicité pour générer des revenus, au lieu de les segmenter par
groupes d’intérêts.

IA

Système de
recommendations

classique

�

?

UA

??

��

? ??

PProx

Figure B.8: Vue d’ensemble de PProx

PProx est une solution pragmatique permettant de fournir un service de recommandations
aux utilisateurs des plateformes de streaming tout en préservant leur vie privée, en
garantissant un anonymat total. PProx permet une bonne qualité d’expérience puisqu’il
n’impacte pas la précision ou la nature des recommandations, et peut être déployé avec
des contraintes minimales. Il dépend d’un système de double proxy dans des enclaves Intel

Simon Da Silva — Univ. Bordeaux, LaBRI 149 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

SGX, situé entre l’utilisateur et le service de recommandations, qui chiffre et anonymise
les requêtes à la volée de manière transparente. Il mélange également les requêtes des
différents clients afin de casser définitivement le lien entre les utilisateurs et les contenus
qu’ils visionnent ou reçoivent comme recommandation (voir Figure B.8). Ce principe
est robuste aux attaques de type side-channel, et même à la compromission d’une des
enclaves. PProx passe à l’échelle de manière élastique et dynamique sur un réseau de
machines disposant d’enclaves Intel SGX.

IA

Système de
recommendations

classique

�

�	

�

�

�

�	

�

� �	

� �	

� �	

�	

UA

(a) PProx - Insertion d’un élément

IA

Système de
recommendations

classique

�	

�

�	

�

�	

�

�

�	

�

� �	

� �	

�
�	�	�	

�	�	�	

�	�	�	

UA

(b) PProx - Envoi des recommendations

Nous avons connecté PProx avec le système de recommandations intégré dans Harness
et l’avons évalué sur un cluster de 27 machines. Les résultats démontrent la capacité de
PProx à gérer un grand nombre de requêtes avec une faible latence (moins de 100ms contre
plusieurs secondes pour les systèmes similaires actuels), permettant d’atteindre la charge
maximale supportée par le système de recommandations avec un surcoût acceptable
(seulement 30% à 50% de nœuds en plus).

B.7 Conclusion

Le streaming vidéo évolue très rapidement et rencontre de nombreux défis techniques et
technologiques. Nous croyons que notre travail prouve que sécurité et protection de la vie
privée des utilisateurs ne rime plus avec faibles performances et basse qualité d’expérience.
De nombreuses solutions pragmatiques peuvent être développées dans l’industrie en se
basant sur nos contributions.

Simon Da Silva — Univ. Bordeaux, LaBRI 150 High-QoE Privacy-Preserving Video Streaming

APPENDIX B. RÉSUMÉ ÉTENDU

Nous espérons que généraliser Muslin, PrivaTube et PProx pourra permettre à une
nouvelle génération de services de streaming vidéo respectant la vie privée de voir le
jour.

Simon Da Silva — Univ. Bordeaux, LaBRI 151 High-QoE Privacy-Preserving Video Streaming

	Résumé
	Abstract
	Remerciements
	Table of Contents
	List of Acronyms
	List of Equations
	List of Figures
	List of Tables
	Introduction
	Motivation
	Challenges and objective
	Thesis overview

	Background
	Traditional video encoding and delivery
	Adaptive Streaming
	Dynamic Adaptive Streaming over HTTP
	Other HAS solutions
	Multiple-source streaming

	Related work
	Video streaming
	Edge-assisted and Peer-to-Peer streaming platforms
	WebRTC
	CDN-based streaming platforms architectures

	Privacy-preserving streaming
	Unlinkability-based solutions
	Designing privacy-preserving systems using Intel SGX

	Recommender systems
	Recommendation-as-a-Service
	Privacy issues for Recommendation-as-a-Service
	Privacy-preserving Recommendation-as-a-Service

	Muslin: High-QoE cost-efficient multi-source streaming
	Introduction
	Muslin: Multi-Source Live Streaming
	Provisioning module
	Selection module
	Implementation and scalability discussion

	Experimental setup
	Provisioning, forecast, advertising and delivery policies
	Servers and clients setup

	Evaluation results
	Delivery solutions
	Provisioning cost
	Quality of Experience
	QoE fairness
	Network overhead
	Experiments summary and discussion

	Conclusion

	PrivaTube: Privacy-preserving edge-assisted streaming
	Introduction
	System model and objectives
	Practical and High-QoE Streaming
	Edge-assisted Content Delivery Network
	Adaptive Streaming
	Implementation

	Privacy
	Trusted execution environments
	Fake requests

	Discussion
	Security Analysis
	Limitations

	Evaluation
	Experimental setup
	Performance of video servers
	Impact of assisting peers
	Fake requests and pre-fetching policies

	Conclusion

	PProx: High-QoE privacy-preserving Recommendation as a Service
	Introduction
	System model and objectives
	System model
	Trust and operational assumptions
	Privacy objectives and adversary model

	PProx in a nutshell
	PProx protocol design
	Provision and use of cryptographic material
	Transparent REST calls redirection
	Requests and response shuffling

	Security analysis
	User-Interest Unlinkability
	Impact of Shuffling
	Limitations

	Integration and Reproducibility
	Workload injection and stub LRS
	Experimental reproducibility

	Implementation
	Evaluation
	Micro-benchmarks
	Macro-benchmarks: PProx with the Harness LRS

	Conclusion

	Conclusion and further directions
	Contributions summary
	Further research directions
	Closing remarks

	Bibliography
	Appendix Publications
	PProx
	PrivaTube
	Muslin
	MS-Stream
	Awards

	Appendix Résumé étendu
	Introduction
	Motivation
	Contexte
	Muslin
	PrivaTube
	PProx
	Conclusion

