
MUSLIN: Achieving High, Fairly Shared QoE Through
Multi-Source Live Streaming

Simon Da Silva1, Joachim Bruneau-Queyreix23, Mathias Lacaud12,
Daniel Négru4, Laurent Réveillère1

1 Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France, 2 Joada SAS, Bordeaux, France,
3 National Institute of Telecommunications, Warsaw, and 4 Univ. Bordeaux, Bordeaux INP, LaBRI, Talence

{sdasilva,mlacaud,reveillere,negru}@labri.fr,jbruneauqueyreix@joada.net

ABSTRACT
Delivering video content with a high and fairly shared quality
of experience is a challenging task in view of the drastic
video traffic increase forecasts. Currently, content delivery
networks provide numerous servers hosting replicas of the
video content, and consuming clients are re-directed to the
closest server. Then, the video content is streamed using
adaptive streaming solutions. However, some servers become
overloaded, and clients may experience a poor or unfairly
distributed quality of experience.

In this paper we propose Muslin, a streaming solution
supporting a high, fairly shared end-users quality of experi-
ence for live streaming. Muslin leverages on MS-Stream, a
content delivery solution in which a client can simultaneously
use several servers. Muslin dynamically provisions servers
and replicates content into servers, and advertises servers to
clients based on real-time delivery conditions. We have used
Muslin to replay a one-day video-games event, with hundreds
of clients and several test beds. Our results shows that our
approach outperforms traditional content delivery schemes by
increasing the fairness and quality of experience at the user
side without requiring a greater underlying content delivery
platform.

CCS CONCEPTS
• Networks;

KEYWORDS
live streaming, multi-source adaptive streaming, fairness, QoE

ACM Reference Format:
Simon Da Silva1, Joachim Bruneau-Queyreix23, Mathias Lacaud12,
Daniel Négru4, Laurent Réveillère1 . 2018. MUSLIN: Achieving High,
Fairly Shared QoE Through Multi-Source Live Streaming . In
Packet Video’18: 23rd Packet Video Workshop, June 12–15, 2018,

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
Packet Video’18, June 12–15, 2018, Amsterdam, Netherlands
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5773-9/18/06. . . $15.00
https://doi.org/10.1145/3210424.3210432

Amsterdam, Netherlands. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3210424.3210432

1 INTRODUCTION
End-users’ Quality of Experience (QoE) is a crucial factor
for the success of the increasing number of video streaming
services. According to Cisco [3], video traffic will experience a
tremendous growth and is expected to exceed 80% of the total
Internet traffic by 2020. Most of the time, such traffic increase
forecasts are not followed by the necessary upgrade of core
networks capacity due to the important costs it incurs and
major issues arise with respect to the QoE of such services.
Therefore, the design of current and future content delivery
solutions needs to consider such aspects.

Content Delivery Networks (CDNs) are extensively used
for the delivery of video content over the Internet. In such ar-
chitectures, geographically distributed replica servers located
as close as possible to the consuming clients are provisioned
in advance with sufficient capacities using estimates of the
expected workload. When accessing a content, consuming
clients are automatically re-directed to the closest server so
as to temper network congestion and achieve higher through-
put. Although CDN solutions can handle a large volume
of requests, they laboriously adapt to the highly dynamic
and volatile nature of live streaming service audiences. As
a consequence, the streaming infrastructure can rapidly be
either over-scaled incurring unnecessary expenditures, or
under-sized and thus delivering poor QoE to end-users.

In addition to the CDN-based infrastructure, streaming
services usually rely on HTTP Adaptive Streaming (HAS)
solutions, often relying on the widely adopted Dynamic Adap-
tive Streaming over HTTP (DASH) standard. Such solutions
enable the consuming client to dynamically adjust the re-
quested content bitrate according to the observed network
conditions or to the client buffer occupancy. However, if a
large amount of end-users located under the same geographic
area is simultaneously consuming the same streaming service,
the nearest server may become rapidly overloaded. Some users
may consequently suffer throughput degradation or content
unavailability, and experience a poor or unfairly shared QoE
as they compete for network and server resources.

We introduce Muslin, a streaming solution supporting a
high, fairly shared end-users quality of experience for live
streaming services over the Internet. Muslin leverages on MS-
Stream, based on the DASH standard, in which a client can
simultaneously use several servers to aggregate throughput on

https://doi.org/10.1145/3210424.3210432
https://doi.org/10.1145/3210424.3210432

Packet Video’18, June 12–15, 2018, Amsterdam, NetherlandsS. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère

multiple channels. Muslin periodically estimates the required
throughput to adjust the service infrastructure scale. Muslin
then assigns content servers to clients based on periodic
feedbacks from Muslin clients during streaming sessions.

2 RELATED WORK AND BACKGROUND
Video streaming is a trending topic in research as consumers
demand is continuously growing. Many video streaming ar-
chitectures and techniques have been proposed [23, 24]. HAS
protocols have seen important interest from the industry and
research, mainly due to their capabilities to render smooth
video playback to the consumers, hence a better QoE.

HTTP Adaptive Streaming and DASH. The MPEG-DASH
standard, widely adopted in the industry, aims at delivering
uninterrupted multimedia content through the network via
conventional HTTP traffic [29]. In a DASH server, different
representations of the content split over segments of a few
seconds are made available to the consuming client at al-
ternative bitrates. Segments are composed of video frames
sequences gathered into independent units called Groups of
Pictures (GoP). A manifest file (the Multimedia Presenta-
tion Description, MPD) details the representations that are
available for every segment and also provides a list of servers
where these segments can be accessed at. The MPD is initially
handed out to the client, which then proceeds to retrieve the
segments at the desired quality. During the streaming session,
the client can dynamically switch the desired representation
to another one so as to adjust to the network conditions or
to its buffer status.

Multiple-Source Adaptive Streaming. The Multiple-Source
Adaptive Streaming over HTTP (MS-Stream) [8–11] solution
is a proposition that extends the DASH standard, wherein a
client can simultaneously utilize multiple servers in order to
aggregate bandwidth over multiple links while being resilient
to network and server impairments. In MS-Stream, for a
given video segment, each considered server delivers a video
sub-segment to the client.

GOP	
GOP	

GOP	
GOP	GOP	

GOP	

Sub-segment 1 Sub-segment 2

GOP	GOP	
GOP	
GOP	
GOP	

GOP	

GOP	
#1	GOP	
GOP	

GOP	
GOP	

GOP	

Sub-segment 3

High bitrate GOP GOP	
Redundant
bitrate GOP GOP	 Null bitrate GOP GOP	

Sub-segment	
composer	at	
MS-Stream	
server	

Content qualities available at
MS-Stream server

Time Time

Example of possible sub-segments

GOP	
#1	GOP	

GOP	
GOP	
GOP	
GOP	

GOP	
#1	GOP	

GOP	
GOP	
GOP	
GOP	...

Figure 1: Sub-segment generation and composition

1 Mbps

2 Mbps

1 Mbps

Up	to	a	4	
Mbps	quality	

Sub-segment request

1	

 Sub-segment delivery 3	

2	Sub-segment composition

4	 Sub-segment aggregation
5	 Adaptation

Figure 2: MS-Stream content delivery overview

As shown in Fig.1, sub-segments are generated by inter-
leaving GoPs at different bitrates for the same segment: a
high desired bitrate, a critically low bitrate (redundant bi-
trate), or an emtpy GoP. The redundant bitrate is set to low
values (e.g. 150 Kbps) in order to provide video playback at
the lowest possible network transfer cost. Reconstructing the
original content quality is achieved by selecting the GoPs of
higher size in the pool of received sub-segments at client-side.
Should some sub-segments be missing, the content is still
playable by relying on the redundant GoPs, hence displaying
a sub-optimal visual quality but providing reliability and less
rebufferings in fluctuating network conditions.

An overview of the MS-Stream functioning is depicted
in Fig. 2. A MPD file containing the available MS-Stream
servers and video segments is periodically delivered to the
client. The client instructs MS-Stream servers to generate
and deliver sub-segments composed of video GoPs from the
representations available (listed in the MPD file). Then, the
MS-Stream client merges the received sub-segments to re-
construct a playable video segment with the highest possible
visual quality. The client adapts the number of simultaneously
used servers according to the observed network conditions and
to the targeted bitrate. The client also attempts to minimize
the bandwidth consumption overhead (𝑂%) resulting from
GoP redundancy. This redundancy adds about 6.5% network
overhead on average. It ought to be noted that the generation
and aggregation of sub-segments have very low processing
footprints [10] as they only require to assemble already en-
coded GoPs available at different bitrates. A demonstration
of MS-Stream is available online [1].

The work of Adhikari et al. [20] advocates that QoE would
greatly benefit from the venue of a practical HAS that can
actually utilize multiple servers simultaneously. Even though
there are some propositions for multiple servers stream-
ing [17, 22], to the best of our knowledge, none of the existing
other approaches provide both redundancy between indepen-
dent sub-segments (to avoid rebufferings) and bandwidth
aggregation (to reach a higher visual quality).

Content replication policies. The most widespread video
caching and replication technique is based on greedy heuristic
algorithms. Indeed, iteratively caching content with global
system knowledge to try to reach an optimum has been shown
to be an efficient way to distribute video content [4]. It can
be done by maximizing a utility function [21] or minimizing
a cost function [13, 28] for instance. Other policies consider
social relationships between users and forecast the trending
videos [7]. Our work is also based on a greedy iterative
algorithm, however it differs from these propositions. First,
the live content is only stored for a short time, as opposed
to on-demand streaming where caching policies are often
applied on a per-segment basis for each video content. In our
case, the popularity of each content only corresponds to the
current number of viewers. Besides, some works use network
awareness [12] and QoS metrics to route requests or to select
servers, but do not consider end-users QoE. Zheng et al. [31]
base their approach on complex path latency optimization

MUSLIN: Achieving High, Fairly Shared QoE Through Multi-Source Live StreamingPacket Video’18, June 12–15, 2018, Amsterdam, Netherlands

through multiple servers, but not bandwidth or system scale.
Similarly, Puntheeranurak et al. [27] only take into account
latency, delay and jitter inside the network. As opposed
to these approaches, Muslin takes into account live clients
feedbacks to provision servers.

Servers selection and QoE fairness. Although CDN opera-
tors keep their strategies secret [26], the usual paradigm is to
estimate the audience for an event, and to provision enough
servers near end-users to withstand the demand. Then, when
clients request video content, the CDN strategy is to route
their requests to the nearest server thanks to DNS [6] or
IP anycast [5], and use HAS protocols for delivery. This be-
havior minimizes network-induced latency, and lowers the
probability to encounter congestion. For instance, Adhikari
et al. [20] introduced the DASH framework of Netflix, the
largest DASH provider worldwide, and outlined that a user
is always bound to one server, regardless of network issues.
Consequently, one major drawback is that servers can get
overloaded, and thus some clients may receive a poor QoE or
might even not have access to the content at all. Therefore,
Muslin takes into account not only the distance, but also
the server bandwidth and requests failure (timeout) rate,
enabling to provide a better QoE to the users. Besides, there
have been some attempts to reach a better QoE fairness
between HAS clients. Georgopoulos et al. [15] use Software
Defined Networks to allocate bandwidth to each link, and
Petrangeli et al. [16] adapt the video bitrate requested by
clients. However, to the best of our knowledge, all approaches
towards higher QoE fairness are single-source oriented and do
not consider dynamically advertising servers to the clients.

3 MUSLIN: HIGH, FAIRLY SHARED QOE IN
MULTI-SOURCE LIVE STREAMING

As previously-mentioned, Muslin goal is to provide a high
and fairly shared QoE for live streaming services. To do so,
it tackles the main reasons why end-users are not satisfied
with their streaming experience, which are the number of
rebuffering events, considered the main negative impact on
perceived QoE [18], the average video bitrate displayed on
the user video player and the number of resolution changes
during the session, as both have a significant influence on
QoE in adaptive streaming [14]. Muslin intends to solve the
root causes for such QoE degradation, the two main reasons
being (1) the server load and (2) the low bandwidth between
the server and the client. Indeed, if a server is overloaded or
if the network channel bandwidth to this server is low, clients
requests to this server will timeout and cause rebufferings
or visual quality degradation. Therefore, Muslin is able to
monitor current delivery conditions to adapt its delivery
schemes.

The Muslin system is composed of a Muslin server, MS-
Stream clients, and MS-Stream content delivery servers with
a Muslin overlay to handle feedbacks and provisioning. In-
deed, Muslin clients send periodic feedbacks to the Muslin
server, including the observed bandwidth from each server,
the video sub-segment requests failure (timeout) rate, their

average displayed video bitrate, the number of rebufferings
they experience, and the number of quality changes. Then,
based on these feedbacks, the Muslin server accordingly scales
the underlying delivery platform, re-allocates servers, and
re-advertises content servers to Muslin clients to provide a
better QoE to end-users.

Figure 3: Muslin system architecture overview

As illustrated in Fig.3, (1) the Muslin server dynamically
provisions content servers and replicates content to avail-
able MS-Stream content delivery servers, which then register
themselves to the selection module; (2) when a client re-
quests a MPD file, the selection module replies with a list of
available servers; (3) the client can access live content and
begin the streaming session with the MS-Stream protocol;
(4) Muslin clients send periodic feedbacks. In this section,
we present in details the Muslin system and the Muslin
server two main components, the provisioning module and
the selection module.

3.1 Provisioning module
The provisioning module goal is to decide on the number of
servers to provision not only to answer end-users throughput
demand in video contents, but also to maximize their QoE
and minimize the required infrastructure scale. To do so, it
periodically estimates the required throughput to fulfill the
demand based on actual feedbacks, and provisions a subset of
servers to host the content. The provisioning module period 𝑇
is equal to the length of two segments (typically 10 seconds).

Audience forecast. In order to estimate the demand, Muslin
computes the future number of clients during each period
𝑇 . The current audience is defined as 𝑣𝑡. The estimated au-
dience at the next iteration (𝑡 + 𝑇) is labeled ̂︂𝑣𝑡+𝑇 . Finally,
∆𝑣 represents the change in number of viewers, that is to
say ∆𝑣 = 𝑣𝑡 − 𝑣𝑡−𝑇 . Muslin estimates the audience with the
following formula: ̂︂𝑣𝑡+𝑇 = 𝑣𝑡 + ∆𝑣 (1)
As the actual replication is mostly based on clients feedbacks,
a more accurate estimation is not required.

Throughput estimation. Muslin throughput estimation al-
gorithm uses the demand forecast ̂︂𝑣𝑡+𝑇 to estimate how much
throughput 𝐷 the overall system must provide to the users.
Each client tries to reach a target quality (highest available
video bitrate) 𝑄. Due to MS-Stream specification, the sub-
segments redundancy adds a network bandwidth overhead

Packet Video’18, June 12–15, 2018, Amsterdam, NetherlandsS. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère

percentage 𝑂 (up to 10%). Besides, we introduce 𝐶, a dy-
namic corrective coefficient to address the network and server
issues. It takes into account the mean average video bitrate
𝐵 displayed by all clients watching the stream, and the fail-
ure rate 𝐹 𝑅 which is the proportion of clients who failed to
obtain in time the response of their last request from the
server (that is to say the number of late replies over the total
number of requests).

𝐶 =
𝑄

𝐵
* (1 + 𝐹 𝑅) (2)

The dynamic coefficient 𝐶 allows the system to scale accord-
ing to current clients QoE. It is then possible to compute the
required system throughput that will be requested by the
clients, using the following formula:

𝐷 = 𝐶 * ̂︂𝑣𝑡+𝑇 * (𝑄 +𝑂) (3)

Provisioning decision. When the total throughput 𝐷 is
known, the provisioning module decides which servers to
provision. To do so, the provisioning module periodically
computes a server Ranking Score 𝑅𝑆𝑠 for each server 𝑠 for
the provisioning decision. The 𝑅𝑆𝑠 is based on clients and
servers proximity, and on feedbacks gathered periodically
from all clients. For each server, the number of clients for
which this would be the closest content server is computed as
𝑁𝑠. Also, the Muslin clients detect when servers fail to deliver
a sub-segment in time. This measurement is aggregated into
a failure rate 𝐹 𝑅𝑠. It represents the ratio of delivery failures
detected over the total number of clients that requested a sub-
segment from this server during the last 𝑇 seconds. Besides,
all clients can estimate the bandwidth from a specific server
by observing delivered throughput in past requests. Muslin
can thus compute the average observed bandwidth estimate
𝑂𝐵𝑊𝑠 for each server 𝑠. As shown in equation 4, the 𝑅𝑆𝑠

thus takes into account the number of nearby clients 𝑁𝑠,
the failure rate 𝐹 𝑅𝑠, and the average observed bandwidth
𝑂𝐵𝑊𝑠 for each server 𝑠 by computing a geometric mean. The
higher the score, the more likely the server to be provisioned.

𝑅𝑆𝑠 = (𝑁𝑠 * (1 − 𝐹 𝑅𝑠) * 𝑂𝐵𝑊𝑠)
1
3 (4)

First, the 𝑅𝑆𝑠 of content servers is computed, and they are
sorted by decreasing order. If the target throughput 𝐷 is
greater than the current system maximum available through-
put, more servers are iteratively provisioned (by descending
𝑅𝑆𝑠 order) until 𝐷 is reached, in a greedy heuristic-like fash-
ion. Else, if the system is over-provisioned, the servers are
deprovisioned according to their 𝑅𝑆𝑠 in ascending order.

3.2 Selection module
The Muslin selection module goal is to advertise a subset of
available content servers to each client, based on a Ranking
Score 𝑅𝑆𝑠𝑐, in order to reach a high and fairly shared QoE.
Then, Muslin clients decide how many servers they use, based
on MS-Stream adaptation strategies. As illustrated in Fig. 4,
if the closest content server is already overloaded, the Muslin
server selects and advertises other content servers with a
higher 𝑅𝑆𝑠𝑐 to the client. It prevents content starvation from

clients, and allows fairness among users independently from
their geographic position or nearby servers.

Figure 4: Muslin 𝑅𝑆𝑠𝑐-based servers selection example
First, the selection module returns an ordered list of servers

when a client requests to discover available content servers.
To order the list of servers, the selection module uses a client-
specific Ranking Score (labeled 𝑅𝑆𝑠𝑐) for each server 𝑠 and
client 𝑐, based on feedbacks periodically sent by Muslin clients
during streaming sessions. Similarly to the provisioning score,
the 𝑅𝑆𝑠𝑐 is based on the distance between each client and
server, and on clients feedbacks. As shown in equation 5, the
client-specific ranking score includes the maximum distance
between any two places on Earth (20000 kilometers), the
geographical distance 𝐺𝐷𝑠𝑐 using geoIP data inferred from
IP addresses, the video sub-segment delivery failure rate 𝐹 𝑅𝑠

of server 𝑠 (i.e. the percentage of requests the server was not
able to handle on time), and the average observed bandwidth
𝑂𝐵𝑊𝑠 between all clients and server 𝑠.

𝑅𝑆𝑠𝑐 = ((20000 − 𝐺𝐷𝑠𝑐) * (1 − 𝐹 𝑅𝑠) * 𝑂𝐵𝑊𝑠)
1
3 (5)

The selection module computes the client-specific Ranking
Score 𝑅𝑆𝑠𝑐 between each client 𝑐 and each currently provi-
sioned server 𝑠, and returns the MPD file containing servers
sorted by descending 𝑅𝑆𝑠𝑐 order.

3.3 Implementation and scalability discussion
The Muslin modules and Muslin content servers overlay are
implemented in Java and run inside light-weight Docker
containers. Muslin content servers are built on top of MS-
Stream servers by adding the necessary glue code to manage
the interaction with the Muslin provisioning and selection
modules. All interactions with the Muslin modules fulfill
the REST architecture style. Muslin clients are developed
in pure JavaScript and run within any mobile or desktop
Web browser. Clients extend MS-Stream clients by featuring
periodic feedback reports to the Muslin server.

In terms of scalability issues, the Muslin system scales
similarly to current HAS solutions as MS-Stream is compliant
with the DASH standard. A scalability downside is due to
the periodic clients feedbacks as the Muslin server workload
grows linearly with the number of clients. To solve this issue,
we implement on the client a feedback request probability Pr
to bound the number of feedbacks (see equation 6). We thus
ensure statistically that at most 𝑁 clients will send a feedback
for every period 𝑇 , depending on the current audience 𝑣𝑡.

Pr = min (1, 𝑁/𝑣𝑡) (6)

MUSLIN: Achieving High, Fairly Shared QoE Through Multi-Source Live StreamingPacket Video’18, June 12–15, 2018, Amsterdam, Netherlands

Another scalability downside is due to the MPD refresh
requests from Muslin clients every few segments, or when
they experience a poor QoE. Similarly to the clients feedbacks,
the Muslin server can become overloaded when too many
clients request a new MPD file. To solve this issue, the Muslin
selection module is distributed across several network nodes,
each node only handling nearby clients requests (routed using
classic DNS-based schemes).

4 EXPERIMENTAL SETUP
In order to evaluate our approach, Muslin was deployed and
compared with various strategies that are commonly used.

Servers provisioning, advertising, and content delivery
strategies. Although CDN operators keep their strategies
secret, the usual paradigm is to estimate the audience for
an event, and to provision enough servers near end-users to
withstand the demand. Therefore, we implement a Geograph-
ical oracle provisioning policy, which is aware of the exact
amount of viewers and their locations. The system replicates
content to the optimum number of servers near end-users
locations. This is a scenario impossible to reach in real-life,
but it provides a best-case current paradigm comparison.

We then implement three selection policies called CDN,
Random and Round Robin. The CDN strategy is the most
widespread one. It consists in routing clients to the nearest
provisioned servers. In the Random policy, servers in the MPD
file are randomly selected and sorted. The Round Robin policy
balances the load among available servers, as servers within
the MPD file are permuted for each new client request.

We perform our experiments using the Muslin system as
described in Section 3, the policies explained above, and
the MS-Stream solution. We do not detail in this paper the
evaluation of MS-Stream against traditional HAS solutions
based on DASH since it has already been done [10].

Servers and clients setup. We set up 16 Points of Presence
(PoP) geographically distributed in the US on a local network,
by computing the latency and bandwidth between each client
and server according to the geographical distance. We chose
16 locations as most CDN providers have between 10 and
30 PoP [2], and Google provides 16 locations [25]. Besides,
we selected 21 client pools locations in the contiguous US
states. We randomly distributed the clients in the states using
a weighted probability matching the state population (e.g.
California: 13%, Texas 10%, etc.) as shown in Fig. 5.

Audience trace. The used live video content is the Blender
Big Buck Bunny video encoded in five video bitrates: 205 kbps,
1, 2, 4 and 6.4 Mbps. The audience profile is a real trace from
a week-long charitable videogames event streamed online. The
audience used is from July 08 2016 [30], as it contains many
typical audience patterns, from 60 000 to 150 000 viewers
over 30 hours. We scaled down the number of simultaneous
clients to 60 (about 250 unique sessions throughout each
experiment) as our experimental infrastructure could not
support hundreds of thousands of connections. All clients
are desktop with 30 seconds maximum buffer and 8 Mbps
download bandwidth.

Figure 5: US map with points of presence and clients

Experiments. Our experiments consist in a 30 minutes live
streaming broadcast, re-run 5 times to aggregate results and
reduce noise and outliers impact in the distributions. To
remain realistic given the number of clients, we set servers
bandwidth to 30 Mbps, and the provisioning policies can
select up to 13 servers. Each Point of Presence can host
multiple servers simultaneously.

5 EVALUATION RESULTS
The fairness and QoE results are based on three main metrics:
the number of rebuffering events, which is considered the main
negative impact on perceived QoE [18], the average video
bitrate displayed on the user video player and the number
of resolution changes during the session, as both have a
significant influence on QoE in adaptive streaming [14].

5.5

6.0

CDN MUSLIN Random RR

Figure 6: Displayed bitrate (Mbps)

0.0

2.0

4.0

6.0

CDN MUSLIN Random RR

Figure 7: Quality changes per minute
Muslin clients were able to reach a higher QoE compared

to most current setups, as we demonstrate an increase of 100
kbps in median displayed bitrate, 2.5 less quality changes
per minute, and almost no rebufferings compared to a best-
case CDN implementation. The bitrate increase is due to
the dynamic provisioning of content servers based on the
actual clients demand. The quality changes and rebufferings
decreases are a consequence of 𝑅𝑆𝑠𝑐-based servers selection,
which prioritizes servers with available bandwidth and high
response rates.

Furthermore, Muslin median results are not only better
than a best-case CDN implementation, but also the distri-
butions are less spread than other setups, as the fairness

Packet Video’18, June 12–15, 2018, Amsterdam, NetherlandsS. Da Silva, J. Bruneau-Queyreix, M. Lacaud, D. Négru, L. Réveillère

Table 1: QoE fairness (F index)
QoE metric CDN Muslin Random RR
Bitrate 0.7727 0.9610 0.5952 0.4685
Quality changes 0.4551 0.9485 0.5408 0.4660
Rebufferings 0.6952 0.9095 0.5179 0.6452

among users is higher. We thus registered an increase of
19.6% in bitrate fairness, 52% in quality changes fairness and
23.6% in rebufferings fairness, using the F index (based on
standard deviation) described by T. Hoßfeld et al. [19]. The
main reason for such increases is the feedback-based 𝑅𝑆𝑠𝑐

computation, enabling to advertise the most suitable servers
for each client, not necessarily the closest ones. It also spreads
the load evenly across all servers, and avoids starvation that
may happen for some clients in a traditional CDN scheme.

0.0

2.5

5.0

7.5

CDN MUSLIN Random RR

Figure 8: Network overhead (%)
Besides, as Muslin dynamically provisions servers and

advertises more suitable content servers to clients, MS-Stream
manages to lower the required network overhead. Indeed, the
MS-Stream client detects that most servers are able to reply
in time to video segments requests, and thus lowers the
redundancy in sub-segments requests.

6 CONCLUSION
We presented Muslin, a multi-source live streaming system
which manages to reach higher QoE and fairness than cur-
rently adopted streaming systems. Muslin takes into account
clients real-time feedbacks, dynamically replicates content
and improves server advertising to clients to enhance users’
QoE and fairness while minimizing the required infrastruc-
ture scale. We showed in our experiments that thanks to the
coupling of MS-Stream with the proposed Muslin system,
end-users experienced almost no rebufferings, a higher video
bitrate, and more evenly shared QoE, compared to existing
state-of-the-art streaming systems setups. As future work, we
will consider a more complex cost model taking into account
scaling and network costs to further improve Muslin benefits
towards infrastructure cost and cloud computing capabilities.

ACKNOWLEDGMENTS
The research leading to these results was partially supported
by the CHIST-ERA "DIONASYS" project under contract
ANR-14-CHR2-0004 and by the EU Horizon 2020 program to-
wards the Internet of Radio-Light project H2020-ICT 761992.

REFERENCES
[1] 2017. MS-Stream Demonstration: http://msstream.net. (2017).
[2] CDNPlanet. 2018. (2018). cdnplanet.com/geo/united-states-cdn
[3] Cisco. 2016. VNI. (2016). cisco.com/c/en/us/solutions/

collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.pdf

[4] A. Bestavros et al. 2001. Object Replication Strategies in Content
Distribution Networks. Web Caching and Content Delivery
(2001).

[5] A. Flavel et al. 2015. Fastroute: A scalable load-aware anycast
routing architecture for modern cdns. connections 27 (2015).

[6] E. Nygren et al. 2010. The Akamai Network: A Platform for
High-performance Internet Applications. SIGOPS Oper. Syst.
Rev. (2010).

[7] H. Hu et al. 2016. Joint content replication and request routing for
social video distribution over cloud CDN: A community clustering
method. IEEE Transactions on Circuits and Systems for Video
Technology (2016).

[8] J. Bruneau-Queyreix et al. 2017. A multiple-source adaptive
streaming solution enhancing consumer’s perceived quality. In
IEEE Consumer Communications and Networking Conference
(CCNC), demonstration track. Las vegas, United States.

[9] J. Bruneau-Queyreix et al. 2017. MS-Stream: A multiple-source
adaptive streaming solution enhancing consumer’s perceived qual-
ity. In IEEE Consumer Communications and Networking Con-
ference (CCNC). Las vegas, United States.

[10] J. Bruneau-Queyreix et al. 2017. QoE Enhancement Through
Cost-Effective Adaptation Decision Process for Multiple-Server
Streaming over HTTP. In IEEE International Conference on
Multimedia and Expo (ICME).

[11] J. Bruneau-Queyreix et al. 2018. Adding a new dimension to
HTTP Adaptive Streaming through multiple-source capabilities.
In IEEE Multimedia Magazine.

[12] J. M. Batalla et al. 2012. Optimization of the decision process in
network and server-aware algorithms. In International Telecom-
munications Network Strategy and Planning Symposium.

[13] K. Lim et al. 2014. Joint optimization of cache server deployment
and request routing with cooperative content replication. In IEEE
International Conference on Communications (ICC).

[14] M. Seufert et al. 2015. A Survey on Quality of Experience of
HTTP Adaptive Streaming. IEEE Communications Surveys and
Tutorials (2015).

[15] P. Georgopoulos et al. 2013. Towards Network-wide QoE Fair-
ness using OpenFlow-assisted Adaptive Video Streaming. ACM
SIGCOMM Workshop on Future Human-Centric Multimedia
Networking (2013).

[16] S. Petrangeli et al. 2015. QoE-Driven Rate Adaptation Heuristic
for Fair Adaptive Video Streaming. ACM Trans. Multimedia
Comput. Commun. Appl. (2015).

[17] S. Zhang et al. 2015. Presto: Towards fair and efficient HTTP
adaptive streaming from multiple servers. IEEE International
Conference on Communications (ICC) (2015).

[18] T. Hobfeld et al. 2011. Quantification of YouTube QoE via Crowd-
sourcing. In IEEE International Symposium on Multimedia.

[19] T. Hoßfeld et al. 2017. Definition of QoE Fairness in Shared
Systems. IEEE Communications Letters (2017).

[20] V. K. Adhikari et al. 2012. Unreeling netflix: Understanding and
improving multi-CDN delivery. IEEE INFOCOM (2012).

[21] W. Li et al. 2016. StreamCache: Popularity-based caching for
adaptive streaming over information-centric networks. In IEEE
International Conference on Communications (ICC).

[22] W. Pu et al. 2011. Dynamic Adaptive Streaming over HTTP from
Multiple Content Distribution Servers. IEEE Global Telecommu-
nications Conference (GLOBECOM) (2011).

[23] X. Zhang et al. 2005. CoolStreaming/DONet: A Data-driven Over-
lay Network for P2P Live Media Streaming. In IEEE Infocom.

[24] Z. Li et al. 2014. Probe and Adapt: Rate Adaptation for HTTP
Video Streaming At Scale. IEEE Journal on Selected Areas in
Communications (2014).

[25] Google. 2018. (2018). cloud.google.com/cdn/docs/locations
[26] A. Passarella. 2012. A survey on content-centric technologies

for the current Internet: CDN and P2P solutions. Computer
Communications (2012).

[27] S. Puntheeranurak and N. Sa-ngarmangkang. 2015. An improve-
ment of video streaming service using dynamic routing over Open-
Flow networks. In International Conference on Information
Technology and Electrical Engineering (ICITEE).

[28] J. Sahoo and R. Glitho. 2016. Greedy heuristic for replica server
placement in Cloud based Content Delivery Networks. In IEEE
Symposium on Computers and Communication (ISCC).

[29] I. Sodagar. 2011. The MPEG-DASH Standard for Multimedia
Streaming Over the Internet. IEEE MultiMedia (2011).

[30] Twinge. 2018. (2018). twinge.tv/gamesdonequick/streams/#/
22233544288

[31] H. Zheng and X. Tang. 2016. The Server Provisioning Prob-
lem for Continuous Distributed Interactive Applications. IEEE
Transactions on Parallel and Distributed Systems (2016).

cdnplanet.com/geo/united-states-cdn
cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
cloud.google.com/cdn/docs/locations
twinge.tv/gamesdonequick/streams/#/22233544288
twinge.tv/gamesdonequick/streams/#/22233544288

	Abstract
	1 Introduction
	2 Related work and background
	3 MUSLIN: High, Fairly Shared QoE in Multi-Source Live Streaming
	3.1 Provisioning module
	3.2 Selection module
	3.3 Implementation and scalability discussion

	4 Experimental setup
	5 Evaluation results
	6 Conclusion
	Acknowledgments
	References

